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 This study aims to investigate the antioxidant capacity of Gracilaria 

domingensis, a red macroalga, which can help in understanding its 

physiological state under stress and abundance in different ecological 

settings. The effects of solvent polarity on reducing power, lipid 

peroxidation inhibition, and metal chelating ability were analyzed to 

determine the hexane extract's antioxidant capacity. Results showed 

that the hexane extract had the highest antioxidant capacity, as 

demonstrated by Ferric Reduction Antioxidant Power (FRAP), metal 

chelating, and lipid peroxidation inhibition assays. Furthermore, 

activity-guided fractionation of the hexane extract identified 

mycosporine-like amino acids (MAAs) as the primary active 

constituents contributing to the extract's antioxidant activity. The Total 

Phenolic Content (TPC) assay using Folin–Ciocalteu (FC) revealed that 

non-phenolic components such as MAAs also influenced the assay's 

outcomes. Overall, this study highlights the importance of conducting 

multiple assays to accurately evaluate the antioxidant potential of 

Gracilaria domingensis and provides valuable insights into the role of 

MAAs in enhancing the antioxidant activity of the macroalga. 
 

 

1. Introduction 

Reactive oxygen species (ROS) are produced in the organism naturally as a byproduct of metabolism. An 

imbalance between ROS production and antioxidant protection creates oxidative stress, which can lead to 

biomolecule damage. Antioxidants play a crucial role in biological systems since they prevent or delay the 

oxidation of these biomolecules. Evaluating the antioxidant capacity provides relevant information that may be 

used in different research fields, such as studies of the abundance and distribution of species in ecology [1] and 

understanding of the physiological state of species under stress [2]. Besides, in vitro antioxidant assays are low-

cost and require simple laboratory procedures. 

There are several in vitro assays to measure the antioxidant capacities. These in vitro assays can evaluate different 

mechanisms of antioxidant action [3]. Assays that are based on hydrogen atom transfer (HAT) measure the free-

radical scavenging capacity of an antioxidant by hydrogen donation [4]. The inhibition of β-carotene bleaching 
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that is caused by peroxidation of linoleic acid is a well-known HAT-based assay. In the assays that are based on 

electron-transfer (ET) reaction, the free radical is stabilized by donating an electron from an antioxidant [5]. The 

ability to reduce ferric iron (Fe3+) to ferrous iron (Fe2+) measured on the FRAP (ferric reduction antioxidant 

power) and the ability to reduce the 

Folin–Ciocalteu (FC) reagent that was measured in the FC assay are based on ET reactions

In the literature, the FC assay is commonly used for the quantification of the total phenolic content (TPC). Despite 

the popularity for this use, the electron transfer reactions to the FC reagent are not performed exclusively by the 

phenolic compounds [6,7], so the scientific community has discussed the use of the FC assay for measuring 

concentrations of TPC [8]. Yet, a third kind of assay can measure the ability of the antioxidant to chelate transition 

metals. Metal chelating assays measure the ability to sequester transition metals that cause free radical generation. 

A chelator agent such as ferrozine is used in these assays. 

Due to the diversity of mechanisms of antioxidant action and radical types, an antioxidant may react in an assay, 

but it may be not sensitive in others. Consequently, more than one assay should be used to evaluate the antioxidant 

capacity of a sample. This capacity is related to the interaction effects (synergistic, additive, and antagonistic) 

between compounds. Detterweiler et al. [9] proposed an index to evaluate how much the interaction between the 

extract components is responsible for biological activities. Interactions between antioxidant components are often 

in complex mixtures such as extracts [10]. Thus, the activity-guided fractionation can provide us with a better 

understanding of the antioxidant properties of crude extracts. 

Antioxidant capacity has been studied in numerous genera of macroalgae. Part of these studies searches for natural 

antioxidants and extracts for health, food, and cosmetic applications [11,12] and other topics such as the 

evaluation of the effect of abiotic stresses, or variation among seasons. For example, the antioxidant capacity 

from Gracilaria cornea (Rhodophyta) increased under UV exposure [13], and the antioxidant capacity differed 

between dry and rainy seasons for Sargassum vulgare (Ochrophyta) and Palisada flagellifera (Rhodophyta), with 

the highest antioxidant activities in the rainy season for the first and in the dry season for the last [14]. 

Gracilaria (Gracilariaceae, Rhodophyta) is a genus of red macroalga comprising of about 197 species that are 

distributed nearly worldwide [15]. This genus includes species of economic value due to the agar, a phycocolloid 

that is widely used in the food and biotechnology industries [16]. The antioxidant potentials from Gracilaria 

species are reported mainly for crude extracts [17], with promising results for some species. Methanolic extracts 

from Gracilaria corticata and Gracilaria edulis have significant activities in the FRAP assay when compared to 

BHT (butylated hydroxytoluene) [18], and some crude extracts from Gracilaria gracilis have higher or similar 

reducing activities than BHT and gallic acid. [19]. 

Compounds with antioxidant properties that are already identified in the genus include bromophenols from 

Gracilaria edulis [20], carotenoids from Gracilaria birdiae and Gracilaria tenuistipitata [21,22], floridoside from 

G. tenuistipitata [23], citric acid from Gracilaria vermiculophylla [24], and mycosporine-like amino acids 

(MAAs) from several species [13,25–27]. Phenolic compounds are among the most potent antioxidants in nature, 

and they are found in abundance in land plants and brown algae. Benzoic acid, gallic acid, gentisic acid, 

phydroxybenzoic acid, protocatechuic acid, salicylic acid, syringic acid, and vanillic acid are phenolic compounds 

that have been identified in Gracilaria [17]. 

Gracilaria domingensis (Kützing) Sonder ex Dickie is distributed in the Western Atlantic Ocean from Mexico to 

northeast Brazil. The antioxidant potential of G. domingensis was evaluated in two studies. One study evaluated 

only crude extracts [21], and another study focused on the algal nutritional potential using bleached samples [25]. 

Unlike previous studies, we investigate the components that are responsible for the antioxidant capacities of the 

crude extracts using activity-guided fractionation. This procedure allows locating the compounds that are active. 
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To this end, we selected assays that evaluate the main mechanisms of antioxidant action: electron-transfer reaction 

(FRAP and Folin–Ciocalteu assays), hydrogen atom transfer reaction (β-carotene-linoleic acid assay), and the 

ability to chelate transition metals based on the measurement of the iron-ferrozine complex. 

2. Material and Methods 

2.1. Algal Samples 

Gracilaria domingensis was collected in the intertidal zone at “Morro de Pernambuco” 

Beach in the city of Ilhéus in Bahia state (14◦48021.600 S, 39◦01025.600 W). The fresh sample (10 kg) was rinsed 

in tap water and triaged for removal of epibionts. DNA barcoding (COI-5P— mitochondrial cytochrome c oxidase 

subunit I gene) and morphological characters were used for taxonomical identification of the species [28,29]. The 

samples were initially air-dried at room temperature in a shaded environment (~one day), and then in an air 

circulation oven at 40 ◦C (~two days). 

2.2. Preparation of the Crude Extracts and Fractionation of the Active Extracts 

Figure 1 depicts the general scheme of the extraction and fractionation procedure. 

The dried samples were ground in a knife mill (30-mesh; Fortinox® STAR FT 80, Piracicaba, Brazil). The algal 

powder (1 kg) was macerated at 50 ± 5 ◦C for 8 h in organic solvents (1:10, w/v) in increasing order of polarity 

starting with hexane, followed by dichloromethane, methanol, and 80% methanol. The final residue was 

macerated in ultrapure water (1:20, w/v) at 50 ± 5 ◦C for 8 h. The dried methanolic and hydromethanolic extracts 

were desalted using methanol precipitation by mixing with one volume of methanol. After the homogenization, 

the sample was allowed to sit at room temperature for 15–30 min, and the supernatant was collected. The organic 

extracts were concentrated in a rotary evaporator (<45 ◦C), and the aqueous extract was freeze-dried. There were 

five crude extracts that were obtained: hexane (Hx = 4.2 g), dichloromethane (DCM = 2.9 g), methanol (M = 65 

g), 80% methanol (80M = 29 g), and aqueous (Aq = 340 g). 

The Hx and M extracts were partitioned and fractionated. The Hx extract was dissolved in DCM and partitioned 

with 50% methanol (yields of 3.5 g and 0.5 g, respectively). Part of the DCM phase (2.5 g) was fractionated in 

silica column chromatography (silanized silica gel 60, Merck Millipore, Darmstadt, Germany) using as mobile 

phase a solvent gradient in decreasing order of polarity (water—250 mL, 25% methanol—250 mL, 50% 

methanol—250 mL, 80% methanol—250 mL, methanol—250 mL, methanol:dichloromethane (7:3)—250 mL, 

methanol:dichloromethane (3:7)—2 × 250 mL, dichloromethane—6 × 250 mL, and hexane—250 mL). All the 

fractions were monitored by analytical thin-layer chromatography (TLC; Merck Silica Gel 60 F254, Darmstadt, 

Germany), visualized using iodine vapor, and pooled together according to elution similarity, resulting in five 

groups (F1—20 mg, F2— 16 mg, F3—165 mg, F4—632 mg, and F5—1.6 g). Part of the group F5 (41 mg) was 

fractionated in preparative thin-layer chromatography (TLC; 60G silica gel, MerckMillipore, impregnated with 

0.02% sodium fluorescein). The mobile phase was hexane:diethyl ether:acetic acid (80:20:1, v/v/v). The plates 

were visualized under UV light, and five bands were scraped off the silica gel, resulting in the subfractions S1 

(3.4 mg), S2 (11 mg), S3 (3 mg), S4 (4.3 mg), and S5 (19 mg). The M extract was dissolved in 50% methanol 

and partitioned with DCM (yields of 59 g and 5 g, respectively). Part of the 50% methanol phase (531 mg) was 

fractionated by semi-preparative high-performance liquid chromatography (HPLC; Agilent 1200 series, USA) 

equipment using a semi-preparative column (Zorbax RX-SIL HILIC, 9.4 mm × 250 mm, 5 µm, USA), with a 

mobile phase of acetonitrile (solvent A) and 0.2% acetic acid (solvent B) in isocratic elution with 68% A for 20 

min, and flow rate of 4 mL min−1. This fractionation procedure resulted in a fraction that was rich in two MAAs 

(31 mg; porphyra-334 and shinorine, 70% and 30% respectively). 

The chemical characterization of the active extracts and fractions was performed using analytical TLC plates, 

GC-MS (Gas Chromatography-Mass Spectrometry), and an analytical HPLC system. The group F5 was analyzed 
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by analytical TLC (Merck Silica Gel 60 F254, Darmstadt, Germany) [30]. The mobile phase was hexane:diethyl 

ether:acetic acid (80:20:1, v/v/v), and the plates were visualized using iodine vapor. The M and 80M extracts and 

subfractions S1 to S5 were analyzed by GC-MS and HPLC with Diode Array Detection (HPLC-DAD). For the 

GC-MS analysis, the samples (100 µg) were dissolved in 50 µL of pyridine and derivatized by reaction with 50 

µL of BSTFA for 30 min at 80 ◦C. The derivatized samples were evaluated by GC-MS (Agilent 6890N/5975, 

Malaysia) that was equipped with an HP-5MS column (30 m × 0.25 mm, 0.25 µm, USA) [31]. For the HPLC–

DAD analysis, the samples were injected into a 1260 Infinity LC System (Agilent, Santa Clara, CA, USA). A 

ZORBAX Eclipse plus C18 column (150 mm × 4.6 mm, 3.5 µm, USA) was used for the analysis of the 

metabolites, and the mobile phase was a gradient of 0.1% acetic acid and acetonitrile [32]. The M and 80M 

extracts were also analyzed for MAAs through HPLC-DAD using an HILIC column (Zorbax RX-SIL, 250 mm 

× 4.6 mm, 5 µm, USA), and a gradient of acetonitrile:5 mM ammonium acetate (9:1, v/v) and acetonitrile:5 mM 

ammonium acetate (1:1, v/v) as mobile phase [33]. The MAAs were identified by comparison with isolated 

standards and quantified using a calibration curve of porphyra-334 (R2 > 0.99). 

  
Figure 1. Scheme of the extraction and fractionation procedure depicting the crude extracts (Hx—hexane, 

DCM—dichloromethane, M—methanol, 80M—80% methanol, Aq—aqueous), the phase partitioning (50M—

50% methanol and DCM—dichloromethane), the fractions F1 to F5, a fraction rich in two MAAs 

(mycosporine-like amino acids; porphyra-334 and shinorine), and the subfractions S1 to S5. 1. Extraction. 

2. Desalination. 3. Partition, 4. Silica column chromatography, 5. Preparative thin layer chromatography (TLC), 

and 6. Semi-preparative high-performance liquid chromatography (HPLC). 

2.3. Determination of the Antioxidant Capacity 

All the assays were performed in 96-well clear polystyrene microplates using a microplate reader (Synergy™ H1 

BioTek®, Winooski, VT, USA). All the samples (crude extracts, phase partitioning, fractions, and subfractions) 
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were dissolved in DMSO and diluted in ultrapure water to obtain sample concentrations between 0.6 and 6 mg 

mL−1 (final concentrations in the wells between 40 and 400 µg mL−1) and a DMSO concentration of 10% (v/v). 

In all the assays, a negative control (sample volume was replaced by 10% DMSO), positive control (sample 

volume was replaced by standard), and sample blank 

(sample + reagents of the assay, but without one reagent to avoid the reaction) were included. Sample blanks are 

used to avoid errors from color or turbidity that may exist in the sample. Only corrected absorbances by 

subtracting the sample blank absorbance from the absorbance after reaction were used for calculations. There 

were two natural antioxidants (rutin and p-coumaric acid) and two synthetic antioxidants (Trolox and BHT—

butylated hydroxytoluene) that were used as positive controls. The results were expressed in gallic acid 

equivalents (mg GAE·g−1 dry extract) for the Folin–Ciocalteu and metal chelating assays, Trolox equivalent (µmol 

TE·g−1 dry extract) for the FRAP assay, and protection percentages from the negative control for the β-carotene-

linoleic acid assay. 

2.4. Ferric Reduction Antioxidant Power (FRAP) Assay 

The reducing power by the FRAP assay was conducted following the method that was described previously [34]. 

The FRAP solution was prepared mixing 0.3 M acetate buffer 

(pH 3.6), 10 mM TPTZ in 40 mM hydrochloric acid, and 20 mM ferric chloride in a ratio of 10:1:1. Briefly, a 

volume of 20 µL of sample (final concentration in the well: 400 µg mL−1 for crude extracts and 150 µg mL−1 for 

other samples), negative control, or standard was added to each well along with 15 µL of ultrapure water and 265 

µL of FRAP solution. After incubation at 37 ◦C for 20 min, the absorbances were measured at 595 nm. For the 

sample blanks, a FRAP solution was prepared without TPTZ. A calibration curve was constructed using Trolox 

(final concentrations in well between 0.5 and 7 µg mL−1, R2 > 0.99). 

2.5. Metal Chelating Ability Based on the Measurement of Iron-Ferrozine Complex 

The metal chelating ability assay was performed as the method in the microplate format that was described 

previously [35]. Briefly, a volume of 20 µL of sample (final concentration in the well: 400 µg mL−1 for crude 

extracts and 150 µg mL−1 for other samples), negative control, or standard was added to each well, followed by 

the addition of 260 µL of 10% (w/v) ammonium acetate and 10 µL of 1 mM ferrous ammonium sulfate. After 

incubation for 5 min, a volume of 10 µL of 6.1 mM ferrozine was added to each well. The microplate was 

incubated for 10 min, and the absorbances were measured at 562 nm. For the sample blanks, the volume of the 

ferrozine solution in the well was replaced by ultrapure water. A calibration curve was constructed using gallic 

acid (final concentrations in the wells between 1 and 14 µg mL−1, R2 > 0.99). 

2.6. Lipid Peroxidation Inhibition Using the β-Carotene-Linoleic Acid Assay 

The assay of inhibition of β-carotene bleaching was performed with modifications from the methods that were 

described previously [14]. The reactive solution was prepared by mixing 16 µL of linoleic acid, 160 µL of tween 

40, and 200 µL of β-carotene (2 mg mL−1 in dichloromethane). The solution was evaporated until the complete 

removal of the dichloromethane (<45 ◦C), and then 50 mL of ultrapure water that was bubbled with air for 30 min 

was added. The absorbance was adjusted to 0.90 ± 0.10 at 450 nm. For the assay, 20 µL of sample (final 

concentration in the well: 100 µg mL−1), negative control, or standard was added to each well with 280 µL of 

reactive solution. The microplate was incubated at 45 ◦C under stirring, and the absorbance was measured at 450 

nm in the time 0 min (sample blank) and 120 min. 

2.7. Folin–Ciocalteu (FC) Assay 

This assay was performed based on a previously described method [36]. Into each well containing 200 µL of 

ultrapure water, 20 µL of sample (final concentration in the well: 400 µg mL−1 for crude extracts and 40 µg mL−1 

for fraction), negative control, or standard was added along with 20 µL of Folin–Ciocalteu reagent, and 60 µL of 
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saturated sodium carbonate (25%; w/v). After incubation for 30 min, the absorbances were measured at 760 nm. 

For the sample blanks, the volume of the FC reagent in the well was replaced by ultrapure water. A calibration 

curve was constructed using gallic acid (final concentrations in the well between 1 and 10 µg mL−1, R2 > 0.99). 

2.8. Interaction Indexes 

Interaction indexes (Ii) were calculated based on Dettweiler et al. [9], with adaptations to use for values that are 

expressed in mass equivalent of the reference antioxidant or inhibition percentage. Values ≤ 0.5 indicate synergy, 

values between 0.5–4 indicate noninteraction, and values > 4 indicate antagonism. The index was calculated using 

the following formula: (As × Ys)/Af , where As = antioxidant value of the fraction/subfraction, Ys = yield of the 

fraction/subfraction, and Af = antioxidant value of the original sample. The formula was applied to each 

fraction/subfraction, and the sum of all the values is the interaction index. 

2.9. Statistical Analysis 

The data analysis and graphing software was GraphPad 8®. The results were expressed as the mean ± standard 

deviation (SD; n = 3, technical triplicate). The comparisons between the means were performed by one-way 

ANOVA. The Tukey test was used in post hoc analysis (p < 0.05). 

3. Results 

The Aq extract showed the highest yield (34% on dry algal mass), while the Hx and DCM extracts gave the lowest 

yields (values < 1%). The M and 80M extracts yielded 6.5% and 3%, respectively. The Hx extract was the most 

effective in three-antioxidant assays: lipid peroxidation inhibition (Figure 2A), FRAP (Figure 2B), and metal 

chelating assay (Figure 2C). However, this extract had no activity in the FC assay (Figure 2D). The DCM extract 

showed weak to moderate activities in the four assays (Figure 2). The M and 80M extracts were the most effective 

in the FC assay (Figure 2D), while the Aq extract showed lipid peroxidation inhibition (Figure 2A) and metal 

chelating ability (Figure 2C). 

An activity-guided fractionation of the Hx extract was carried out for the identification of its active constituents 

(Figure 3). The fractionation procedure resulted in the fraction F5 with higher antioxidant activities than those of 

the crude extract (Figure 3). The level of lipid peroxidation inhibition for the fraction F5 (85% of protection) was 

higher than the value for p-coumaric acid—74% of protection (100 µg mL−1). However, further purifications from 

this fraction resulted in a loss of lipid peroxidation inhibition, with values ranging from 10% to 20% of protection 

for all subfractionations (Figure 3A). The interaction index (Ii) among them was 0.23, suggesting that the 

subfractions from F5 have a strong synergistic effect. On the other hand, a synergistic effect was not observed 

among subfractions on FRAP and metal chelating assays (interaction index between 0.5–4). Similar activities to 

fraction F5 were found for subfractions S2 and S4 in the FRAP assay (Figure 3B) and for S2 in the metal chelating 

assay (Figure 3C). 

The chemical composition of the fraction F5 includes free fatty acids, triacylglycerols, monopalmitin, chlorophyll 

a and its derivatives, cholesterol, and polar lipids (Figure 3D). The latter is also found in fractions F1 to F4 (Figure 

3D). Concerning active subfractions, GC-MS analysis confirmed monopalmitin (40%) as the main peak in the 

subfraction S2 and cholesterol (97%) in the subfraction S4. Chlorophyll a and its derivatives were confirmed in 

the subfractions S3 and S4 using HPLC analysis. 

Once the M and 80M extracts were the most active in the FC assay (Figure 2D), the search for phenolic 

compounds was carried out in these extracts. However, even after analysis in GC-MS (Figure S1) and HPLC 

(Figure 4A,B), no phenolic compounds were detected in these extracts. Carboxylic acids (e.g., citric acid), free 

amino acids (e.g., glutamine), heterosides (floridoside and isofloridoside), monosaccharides, and isethionic acid 

were characteristic components of these extracts that were detected by GC-MS (Figure S1 and Table S1), while 

MAAs were practically the unique class of compounds that were found in the HPLC-DAD chromatograms 
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(Figure 4A,B). The methodology for analysis for specific MAAs allowed identification of porphyra-334 as the 

major MAAs of the polar extracts, followed by shinorine, palythine, asterina-330, and palythinol (Figure 4C,D). 

The polar extracts contained a high amount of MAAs, with contents of 7.8% and 9.6% (dry mass of the extract), 

respectively, for the M and 80M extracts. Due to the remarkably high MAAs contents in the M and 80M extracts, 

a fraction of MAA (porphyra-334 + shinorine, 70% and 30%, respectively) was isolated and evaluated in the FC 

assay. This fraction (156 mg GAE·g−1) showed a similar performance to the values that were found for wellknown 

synthetic antioxidants (BHT = 156 mg GAE·g−1 and Trolox = 166 mg GAE·g−1) and 30 times greater than those 

of the original extracts (~5 mg GAE·g−1) (Figure 2D). 

 
Figure 2. Antioxidant activities of crudes extracts that were obtained with increasing polarity solvents and MAAs 

(porphyra-334 + shinorine, 70% and 30%, respectively) from Gracilaria domingensis and standard references for 

lipid peroxidation inhibition (A), FRAP (B), ferrous chelating (C), and Folin– Ciocalteu (D) assays. The values 

(means ± SD; n = 3) were expressed in mg GAE (Gallic Acid 
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Equivalent)·g−1 of dry extract or µmol TE (Trolox Equivalent)·g−1 of dry extract or % of protection. Hx—hexane, 

DCM—dichloromethane, M—methanol, 80M—80% methanol, A—aqueous, MAAs— mycosporine-like amino 

acids, BHT—butylated hydroxytoluene, and pC—p-coumaric acid. 

 
Figure 3. Variation of the antioxidant activities through color scale using the scheme of the fractionation of hexane 

crude extract that was guided by lipid peroxidation inhibition (A), FRAP (B), and ferrous chelating capacity (C). 

Thin-layer chromatography (TLC) (D) of the main lipid classes of the fractions F1 to F5, and indications of the 
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subfractions S1 to S5 that were obtained from the fraction F5. Hx = Hexane, DCM = Dichloromethane, M = 

Methanol, 80M = 80% Methanol, and 50M = 50% Methanol. 1. Partition, 2. Silica column chromatography, and 

3. Preparative thin layer chromatography. St = standard containing cholesterol and triacylglycerol. Chl = 

chlorophyll a and its derivatives. N.D. = not determined. 

 
Figure 4. Global analysis of metabolites (A,B), respectively, methanol and 80% methanol extracts and specific 

analysis of MAAs (mycosporine-like amino acids) (C,D), respectively, methanol and 80% methanol extracts from 

polar extracts of Gracilaria domingensis. 1. Porphyra-334, 2. Shinorine, 3. Palythine, 4. Palythinol, and 5. 

Asterina-330. 

4. Discussion 

Hexane (Hx) and methanolic (M and 80M) extracts of Gracilaria domingensis presented the higher antioxidant 

activities, enabling them for further fractionation and compound identification. The synergetic effects between 

compounds might be responsible for the antioxidant activities that were observed for a fraction of Hx extract 

against lipid peroxidation inhibition. MAAs were the main components of the polar extracts. An enriched fraction 

with porphyra-334 and shinorine presented a Folin–Ciocalteu assay value that was 30 times greater than those of 

the original extracts. 

Despite the low yield, the Hx extract was the most active extract, with significant activities in the three assays 

(FRAP, metal chelating, and lipid peroxidation inhibition). Similar results for non-polar extracts of Gracilaria 

gracilis were obtained previously with the FRAP assay [19]. The fractionation procedure from the Hx extract 

allowed to observe a loss in the lipid peroxidation inhibition (Figure 3A), suggesting synergistic interaction effects 

between the compounds. Synergistic interactions between antioxidant components are common in complex 

mixtures such as crude extracts [10]. Algal extracts have shown synergistic antioxidant activities when they are 

supplemented with isolated compounds [37] and other crude extracts [38]. 

In contrast to lipid peroxidation inhibition, the fractionation procedure led to the subfractions with activities that 

were similar to the original fraction in the FRAP and ferrous chelating assays. The main compounds from fraction 

F5 and its subfractions are primary metabolites with several reports of antioxidant activities. For example, 

chlorophyll a and its derivatives have iron-chelating ability [39], and monoacylglycerols are described with 

reducing activities in the FRAP assay [40]. 
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In contrast to the Hx extract, the Aq extract showed the highest yield, but only weak antioxidant activities in 

ferrous chelating (Figure 2C) and inhibition of lipid peroxidation (Figure 2A) assays. Our previous study showed 

sulfated polysaccharides as the main component of this Aq extract [31]. The antioxidant properties, including 

lipid peroxidation inhibition and ferrous chelating activity, have already been reported for sulfated 

polysaccharides from Gracilaria [41,42]. 

The M and 80M extracts were the most active extracts in the FC assay. The activities for these extracts (~5 mg 

GAE·g−1) were higher or similar to those that were seen in another study 

with Gracilaria, such as G. birdiae (~1 mg GAE·g−1) [43], G. cornea (~1 mg GAE·g−1) [43], Gracilaria 

corticata(~2mg GAE·g−1)[44],G.edulis (~4mg GAE·g−1)[45],G.gracilis (3to 6 mg GAE·g−1)[46], and Gracilaria 

manilaensis (0 to 6 mg GAE·g−1) [47]. However, surprisingly, no phenolic compounds were detected in the 

extracts, suggesting that the concentration of these compounds is lower than the minimum detectable amount, or 

they are absent in G. domingensis. Despite its popularity, the FC method is nonspecific since reducing non-

phenolic compounds can also react with the FC reagent [6,7]. Thus, our results lead us to think that the activities 

using the FC assay can have a strong influence of other non-phenolic components. 

Among the non-phenolic components, the M and 80M extracts have a high content of MAAs. The reducing power 

of MAAs was suggested by Coba et al. [48]. These authors demonstrated a powerful reducing capability of MAAs 

in alkaline conditions with ABTS•+ assay. More recently, a comparative study of the antioxidant capacity of 

isolated MAAs using several assays has demonstrated that these compounds have strong antioxidant activity in 

the FC assay in comparison to a reference antioxidant (Trolox) [33]. This is not surprising since the FC assay is 

performed in a high pH of ~10, an ideal condition for the higher reducing potential of MAAs. Our results show 

that the reducing activities of a fraction of MAA were notably higher than those of the crude extracts (Figure 2D). 

Thus, within the studied samples, MAAs contributed to the antioxidant activities that were observed in the FC 

assay. 

5. Conclusions 

Chemical investigation of the antioxidant potential of Gracilaria species is rarely described in the literature. The 

studies that carried out chemical investigation tried to establish a relationship between antioxidant capacity and 

phenolic compounds through searches of these components in the extracts [11,43] or the use the Folin–Ciocalteu 

assay for quantification of the total phenolic content [44–47]. In the present study, we use the antioxidant activity-

guided fractionation that provided us with a better understanding of the antioxidant properties of the crude 

extracts. The primary components were found as the most active antioxidants from non-polar extracts by the 

FRAP, metal chelating, and lipid peroxidation inhibition assays. On the other hand, MAAs seem to be responsible 

for the antioxidant potential by the FC assay. The interference of non-phenolic compounds on the FC assay should 

not be ignored in algal samples that are rich in MAAs, especially red algae, or other reducing components (e.g., 

ascorbic acid). A critical appraisal of the use of the FC assay for the total phenolic compounds determination is 

suggested for algae. 

Supplementary Materials: The following supporting information can be downloaded at: https: 

//www.mdpi.com/article/10.3390/phycology2030018/s1, Figure S1: GC-MS chromatograms for the methanol (A) 

and 80% methanol (B) extracts from Gracilaria domingensis, showing the abundant peaks. For peak annotation, 

see Table S1; Table S1: Relative abundance (%) of the compounds identified in the methanol (M) and 80% 

methanol (80M) extracts from Gracilaria domingensis. Values comparable only within a same chemical class. 

RT—retention time, (-)—absence, and tr—trace. 
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