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 The aim of this study was to fit an appropriate parametric survival 

model to right-censored liver cirrhosis data using the frequentist 

approach. Secondary data obtained from selected hospital facilities 

were used in this study. The collected data were analyzed using survival 

analysis. The Global test results confirmed that the constant hazard 

assumption was met. The results of the model comparison using the 

Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) revealed that the Weibull proportional hazard (PH) 

model and the lognormal accelerated failure time (AFT) model 

outperformed the other models considered in this study. Overall, the 

lognormal AFT model outperformed the Weibull PH model. Based on 

this model, it was discovered that drugs and liver status were significant 

predictors of survival in patients with liver cirrhosis. Based on these 

findings, it was recommended that patients with liver cirrhosis who 

were on drugs should adhere strictly to their medication and also 

consider regular liver function tests to ensure that their liver is in good 

state. 
 

 

INTRODUCTION 

The liver is the largest gland that performs various vital functions in the body and plays a major role in maintaining 

health by changing absorbed food and eliminating toxins. It is responsible for a variety of functions, including 

regulating glucose metabolism, producing and secreting bile for digestion and absorption of fats from the digestive 

system, producing proteins required by blood plasma, and removing metabolic waste from the blood and secreting 

it into the bile. Liver cirrhosis is a serious and progressive disorder characterized by the liver’s response to lesions 

occurring in it, where some fibrosis appears in the liver due to chronic liver diseases. Liver fibrosis is an 

overgrowth of collagen that causes a change in the shape of the liver in patients with cirrhosis. These changes 

lead to pressure on the blood vessels of the liver and its small pores (Bataller & Brenner, 2019). 

Liver cirrhosis is characterized by irreversible damage, in response to which liver tissue is replaced by fibrosis 

and scarring (Zhou et al, 2014). If unchecked, cirrhosis may progress to end-stage liver disease and cause death. 
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This may or may not be preceded by hepatocellular carcinoma, a type of liver cancer (Llovet, et al., 2016). 

Globally, cirrhosis caused approximately 1.32 million deaths, representing 2.4% of all deaths in 2017. At that 

time, there were approximately 112 million compensated and over 10.6 million decompensated cirrhosis cases 

worldwide, with a prevalence of approximately 1.4% (Sepanlou et al., 2020). In comparison, there were 4.5 

million adults diagnosed with liver disease in the United States in 2018, with cirrhosis of the liver being 

responsible for 56,585 deaths and ranked 9th amongst all causes of death in 2021 (Hawa, 2023). The prevalence 

of cirrhosis in the US is estimated to be approximately 0.27%.5 Although some common causes are infectious 

hepatitis due to Hepatitis B and C viruses, alcohol-related liver disease, and nonalcoholic fatty liver disease, the 

predominant etiology varies according to the geographic location. Although infectious hepatitis remains the most 

common cause of liver cirrhosis globally, alcohol-related liver disease dominates countries like India, Australia, 

Russia, and the continents of Europe and South America (Huang, et al., 2023). 

In advanced cases, the only definitive treatment for liver cirrhosis is liver transplantation (LT) (Grattagliano, et 

al. 2011). The two major problems that may occur in a patient after LT are liver rejection and infection. 

Immunosuppressive drugs are prescribed to prevent liver transplant rejection. These drugs slow down or stop the 

immune system to prevent the rejection of the new liver. Furthermore, patients are at high risk of infections 

(Zahmatkeshan et al., 2017). Thus, identifying factors affecting the survival of patients with liver cirrhosis is of 

paramount importance.   

There is growing interest in applying statistical methods in medicine. One area of statistics that has received much 

attention in medicine is the survival analysis method. Survival analysis is the analysis of time-to-event data (Isaac, 

2019). Some typical examples of time-to-event data in medical science include time to death or time until infection 

(Lawless, 2011).  

The approaches used in survival analysis are different from those used in other statistical techniques for the 

following reasons: time is always the response variable; staggered entries (units in the study may have different 

entrance times) may occur, but this has no bearing on the survival analysis method since it considers the duration 

of observation rather than the time of entry; and finally, normalcy assumptions are violated because survival data 

are typically skewed (Isaac, 2019). 

Parametric hazards models, such as exponential, Weibull, Gompertz; parametric survival models such as 

Lognormal, Log-Logistic, Gamma, e.t.c. have been generally used to analyze time-to-event data. The methods 

give similar results, but each method is unique, usually under specific or no assumptions (Shankar et al. 2019). 

The parametric proportional Hazard (PH) and acceleration failure time (AFT) models are the two most popular 

and frequently used parametric hazard-based regression models. The proportional hazard models are based on the 

constant hazard assumption (constant hazard) while the AFT is the alternative model when the proportional hazard 

assumption is not met. (Khanal et al., 2019).  

In this paper, we present the following points: 

1. Basic Functions of Survival Data Analyses 

There are four basic functions that play pivotal roles in modeling survival data. These include the probability 

density function, survivor function, hazard function, and cumulative hazard function. This section briefly 

discusses these functions.  

a) Survivor Function 

The survivor function denoted by 𝑠(𝑡) is defined as the probability that an individual survives at least t units. 
mathematically, survival function as given below: 

𝑆(𝑡) = 𝑝(𝑇 ≥ 𝑡)          (2.3)  

The survival function denoted is a monotone, non-increasing, and left continuous function, with 𝑆(𝑡) = 1 and 

𝑙𝑖𝑚𝑡→∞𝑆(𝑡) = 0. Survival curve is the graphical representation of the survival function 𝑠(𝑡) as a function of t. 

The survival function is one minus the Cumulative Density Function (CDF) of T, that is 𝑆(𝑡) = 1 − 𝐹(𝑡), where 

𝐹(𝑡) is the cumulative density function of T. 

b) Probability density function: 

Mathematically, the probability density function (pdf) denoted by 𝑓(𝑡) is defined by 
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𝑓(𝑡) = −
𝑑

𝑑𝑡
𝑆(𝑡) = 𝑙𝑖𝑚∆𝑡→0

Pr (𝑡≤𝑇<𝑡+∆𝑡

∆𝑡
       (2.4) 

where indicates the rate of increase of 1 −  𝑆(𝑡), so that 

𝑠(𝑡) = ∫ 𝑓(𝑠)𝑑𝑠
∞

𝑡
         (2.5) 

c) Hazard Function 

The hazard function which is denoted by ℎ(𝑡), is defined as 

ℎ(𝑡) = 𝑙𝑖𝑚∆𝑡→0
Pr (𝑡≤𝑇<𝑡+∆𝑡|𝑇≥𝑡

∆𝑡
=

𝑓(𝑡)

𝑆(𝑡)
       (2.6)  

Equation 2.2 gives the instantaneous rate per unit time for an event to occur, given that the individual survives up 

to time t. Note that ℎ(𝑡)∆𝑡 is the approximate probability of the event to occur in [𝑡, 𝑡 + ∆𝑡), given survival up 

to time t. The hazard function is also known as the hazard rate or failure rate.  

According to Lawless (2003), it is easy to verify that: 

ℎ(𝑡) =
𝑆′(𝑡)

𝑆(𝑡)
= −

𝑑

𝑑𝑡
𝑙𝑜𝑔𝑆(𝑡)         (2.7)  

so that 

𝑙𝑜𝑔𝑆(𝑡) = − ∫ ℎ(𝑠)𝑑𝑠
𝑡

0
         (2.8)  

From equation 2.8, the survival function can be written after taking the exponent as follows: 

𝑆(𝑡) = 𝑒𝑥𝑝 {− ∫ ℎ(𝑠)𝑑𝑠
𝑡

0
}         (2.9)  

From 2.6 and 2.9. it follows that  

𝑓(𝑡) = ℎ(𝑡)𝑆(𝑡) = ℎ(𝑡) 𝑒
{− ∫ ℎ(𝑠)𝑑𝑠

𝑡
0

}
       (2.10) 

d) Cumulative Hazard Function 

The cumulative hazard function, denoted by H(t), is defined as follows: 

𝐻(𝑡) = ∫ ℎ(𝑠)𝑑𝑠
𝑡

0
          (2.11) 

According to Collett (2003), equation 2.11 can be interpreted as the expected number of events that occur up to a 

given time, namely, t. The relationship 𝐻(𝑡) = − 𝑙𝑜𝑔𝑆(𝑡) plays an important role in determining the adequacy 

of a parametric survival model and in formulating likelihood functions for censored survival data. 

2. Regression Models for Time-to-Event Data 

There are two popular approaches for the regression analysis of survival data: Accelerated Failure Time and 

Proportional Hazards models. In the following, we describe the AFT and PH models assuming Ψ(𝑍𝛽) =
exp(𝑍′𝛽). 

i)  The Accelerated Failure Time Model 

In the AFT model, covariates act multiplicatively on survival time. Let T be a random sample of survival times 

and 𝑍 is a vector of covariates such that 𝑍 = 𝑍1, … , 𝑍𝑃, the AFT model defines the relationship of the survival 

function for every time 𝑡 ∈ 𝑇, 𝑆(𝑡|𝑍), and the covariates are as follows: 

𝑆(𝑡|𝑍) = 𝑆0(𝑡𝑒𝑍𝛽𝑡
)          (2.12) 

where 𝑆0(. ) is the baseline survival function, 𝑍 is the vector of covariates, 𝛽 is the regression coefficient vector. 

The factor 𝑒𝑍 in equation 2.12 is known as the accelerated factor, which accelerates or decelerates the survival 

function with covariate 𝑍 =  0. The AFT model assumes that the effects of the covariate are fixed and 

multiplicative by the accelerated factor on the time scale of 𝑡.  

The linear relationship between the covariates and survival time can also be illustrated using the natural logarithm 

of survival time and the covariate 𝑍, as follows 

𝑙𝑛𝑇 = 𝜇 + 𝜑𝑡𝑍 + 𝜎𝑉         (2.13) 

where 𝜇  is the slope, 𝜎  > 0 is an unknown scale parameter, 𝜑𝑡 = (𝜑1, … , 𝜑𝑝) is a vector of regression coefficients, 

𝜑 = −β, and 𝑉 is a distribution error which is a random variable and assumed to follow a certain parametric 

distribution. For each distribution of 𝑉, there is a related parametric for 𝑇. The AFT model is named after the 
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distribution of 𝑇 rather than the parametric distribution of 𝑙𝑛 𝑇. Some popular parametric distributions, which 

correspond to the AFT model, are Weibull, exponential, log-normal, gamma, and log-logistic.  

The survival function of 𝑇𝑖, 𝑖 = 1, … , 𝑛 can be expressed as follows: 

𝑆𝑖(𝑡) = 𝑃(𝑇𝑖 ≥ 𝑡) = 𝑃(𝑙𝑛𝑇𝑖 ≥ 𝑙𝑛𝑡) = 𝑃(𝜇 + 𝜑𝑡𝑍 + 𝜎𝑉 ≥ 𝑙𝑛𝑡)    

𝑃(𝑉𝑖 ≥
𝑙𝑛𝑡−(𝜇+𝜑𝑡𝑍)

𝜎
)          (2.14) 

As stated earlier, the error term 𝑉 in (2.13) is assumed to follow a standard parametric distribution, such as the 

normal, extreme, or logistic. These results lead to log-normal, Weibull, and log-logistic models for T, respectively.  

ii) Proportional Hazard Model 

the proportional hazard assumption indicates that the effect of a covariate is to increase or decrease the hazard by 

a proportionate amount that does not depend on t. Under this assumption, the hazard function with covariate 

vector 𝑚 (fixed/time dependent) is given follows: 

ℎ(𝑡; 𝑍) = ℎ𝑜(𝑡)exp (𝑍′𝛽)       (2.15) 

where ℎ𝑜(𝑡) is the baseline hazard. Thus, the hazard ratio comparing any two specifications of the covariates, say 

𝑚 and 𝑍∗, is  
ℎ(𝑡;𝑍)

ℎ(𝑡;𝑍∗)
= 𝑒𝑥𝑝(𝑍′ − 𝑍∗′)𝛽        (2.16) 

which is constant over time. Therefore, the hazard for one individual is proportional to the 

Hazard to any other individual, where the proportionality constant is not dependent on time. The 

the survivor and probability density functions in the PH model are 

𝑠(𝑡; 𝑍) = [𝑆0(𝑡)]exp (𝑍′𝛽)        (2.17) 

𝑓(𝑡; 𝑍) = 𝑓0(𝑡)exp (𝑍′𝛽)[𝑆0(𝑡)]exp (𝑍′𝛽)      (2.18) 

A proportional-hazard model developed by assuming an arbitrary and unspecified baseline hazard function ℎ𝑜(𝑡) 

in equation 2.16 leads to the popular Cox proportional-hazard (CPH) model (Cox 1972). The CPH mode does not 

rely on the distributional assumption of the outcome variable. However, a fully parametric proportional hazard 

model can be expressed by assuming a baseline distribution for ℎ𝑜(𝑡). The classical exponential and Weibull 

distributions can be used for this purpose. For instance, suppose that T has a Weibull distribution with parameters 

𝑘 and 𝜑. From equation 2.16, the Weibull PH model can be written as 

ℎ(𝑡; 𝑍) = ℎ𝑜(𝑡)𝑒𝑥𝑝(𝑍′𝛽) = 𝑘𝜑𝑘𝑡𝑘−1exp (𝑍′𝛽) = 𝑘(𝜑exp (
𝑍′𝛽

𝑘
))𝑘𝑡𝑘−1  (2.19) 

Equation 2.18 again gives the Weibull hazard with 𝜑∗ = 𝜑𝑒
𝑍𝛽

𝑘 . Therefore, we conclude that the Weibull is closed 

under the PH relationship. In fact, the Weibull model is the only family that is closed under both the multiplication 

of the failure time (AFT framework) and the multiplication of the hazard function (PH framework) by an arbitrary 

nonzero constant (Kalbfleisch & Prentice, 2002). For the Weibull AFT model, 𝜑∗ = 𝜑𝑒−𝑍𝛽, therefore the 

regression coefficients of the AFT and PH models with the Weibull baseline distribution are related as follows: 𝛽 

for the PH model with the Weibull baseline distribution is equal −𝑘𝛽 for the Weibull AFT model (Khan, 2019). 

The likelihood function of the parametric PH model can be written using equation 2.38 as follows: 

𝐿(𝜗) = ∑ 𝛿𝑖[logℎ0(𝑛
𝑖=1 𝑡𝑖 , 𝜔) + 𝑍′𝛽] − ∑ 𝐻0(𝑡𝑖, 𝜔𝑛

𝑖=1 )exp (𝑍′𝛽)    (2.20) 

 Where 𝜗 = 𝑡𝑖, 𝜔, 𝜔 is the vector of parameters of the baseline distribution and 𝛽 is the vector of regression 

coefficients. Equation 2.20 can be maximize directly using Newton-Raphson optimization algorithm.  

Cox (1972) proposed partial-likelihood methods to estimate 𝛽 for Cox PH model, with the baseline hazard ℎ0(𝑡) 

left unspecified. 

Suppose that we have n individuals under study. Let assume 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛 denote their failure/censoring times 

and 𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛 denotes censoring indicators. The observed data for individual i consist of {𝑡𝑖, 𝛼𝑖 , 𝑍𝑖}, 𝑖 =
1,2,3, … , 𝑛. 

Let 𝑡(1) < 𝑡(2) <, … , 𝑡(𝑘) denote the unique-order observed failure times, 𝑖(𝑘)denotes the individual with the 

failure time 𝑡(𝑘), 𝑘 = 1, 2, … , 𝑘 and 𝑅(𝑡) = {𝑖: 𝑡𝑖 ≥ 𝑡) denotes the set of all individuals at risk for failure at time 
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t, popularly known as the risk set.  Using equation 2.16, the conditional probability that the individual 𝑖(𝑘) failed 

at time 𝑡(𝑘) given one subject at risk failed at that time is given as follows: 

ℎ0(𝑡(𝑘))exp (𝑍𝑖(𝑘)
′ 𝛽)

∑ ℎ0(𝑡(𝑘))exp (𝑍𝑙
′𝛽)𝑙𝜖𝑅(𝑡(𝑘))

=
exp (𝑍𝑖(𝑘)

′ 𝛽)

∑ exp (𝑍𝑙
′𝛽)𝑙𝜖𝑅(𝑡(𝑘))

      (2.21) 

After considering the product of such term over all k = 1, 2…, k, equation 2.48 will result to 

𝐿(𝛽) = ∏
𝑒

𝑍𝑖(𝑘)
′ 𝛽

∑ 𝑒𝑍𝑙
′𝛽

𝑙𝜖𝑅(𝑡(𝑘))

𝑘
𝑘=1           (2.22)  

Equation 2.22 is not a usual likelihood function because it is the product of the conditional probabilities, where 

the conditioning event changes over time. Cox (1972) argued that this 

should behave roughly like a likelihood function and can be used as a basis for inference of the following: 

β. This function is called the partial likelihood function in the Cox PH model. Note that (2.22) can also be 

written as 

𝐿(𝛽) = ∏ [
𝑒𝑍𝑖

′𝛽

∑ 𝑒𝑍𝑙
′𝛽

𝑙𝜖𝑅(𝑡(𝑘))

]

𝛿𝑖

𝑛
𝑖=1        (2.23)  

The partial log-likelihood is given as 

ℓ(𝛽) = ∑ 𝛿𝑖[
𝑛
𝑖=1 𝑍𝑖

′𝛽 − log (∑ 𝑒𝑍𝑙
′𝛽

𝑙𝜖𝑅(𝑡(𝑘)) )]      (2.24)  

Thus, the Newton-Raphson iteration or any other optimization method can be used to obtain the maximum 

likelihood of 𝛽 from equation 2.24. 

3. Summary of Literature Review and Gaps 
This chapter presents the literature review, starting with a conceptual, empirical, and theoretical review. Based on 

the empirical literature reviewed, it was discovered that most studies conducted on survival analysis focused on 

nonparametric and semiparametric survival analysis methods, and only a few considered the parametric method. 

In addition, few empirical studies have examined the factors affecting the survival of patients with liver cirrhosis. 

Thus, this study seeks to fill these gaps identified in the literature.       

4. Data Presentation 

The data used are presented in appendix A. The data were also presented using descriptive statistics (Table 4.1. 

Table 4.1: Descriptive Statistics Results   
Variable Category Frequency Percentage 

Hepatitis Type Hepatitis Type A 69 23.7 

 Hepatitis B 141 48.5 

 Hepatitis C 81 27.8 

Educational Level No Education  53 18.2 

 Primary 30 10.3 

 Secondary 155 53.3 

 Tertiary 53 18.2 

Hypertensive Status Negative  219 75.3 

 Positive 72 24.7 

Gender  Male 136 46.7 

 Female 155 53.3 

Marital Status  Single 169 58.1 

 Married 122 41.9 

Drugs  Yes  235 80.8 

 No 56 19.2 

Diet Consumption Yes  222 76.3 

 No 69 23.7 

Liver status Affected  62 21.3 

 Not affected 229 78.7 

  Mean Standard Deviation 

Age   36.68 13.98 

Liver size   6.95 1.76 
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Source: Authors’ compilation. 

Table 4.1 presents the descriptive statistics of the covariates considered in this study. The results revealed that 

majority, 141(48.5%) of the patients had hepatitis B, 81(27.8%) had hepatitis C, and 69(23.7%) of the respondents 

had hepatitis A. Additionally, majority 155(53.3%) of the patients had secondary school level of education, 

53(18.2%) had tertiary, 30(10.3%) had primary and 53(18.3%) had no formal education. In addition, 219(75.3%) 

patients did not have hypertension, whereas 72(24.7%) had hypertension.  

Furthermore, 136(46.7%) of the patients are male while 155(53.3%) were female. Based on marital status, 169 

(58.1%) were single and 122 (41.9%) were married. In addition, 235(80.8%) of the patients were prescribed drugs, 

whereas 56 (19.2%) were not prescribed drugs. Based on diet consumption, 222(76.3%) patients who consumed 

good diet died, whereas 69(23.7%) did not.  In addition, 62(21.3%) of the patients had liver damage, whereas 

229(78.7%) did not. 

The average age of the patients was 36.68 years with a standard deviation of 13.98 years. The average viral load 

was 398361.08 years with a standard deviation of 445374.3. Similarly, the average liver size of the patients was 

6.95 with a standard deviation of 1.76.     

5. Data Analysis and Results 

Table 4.2: Proportional Hazard Assumption   

Variable Chi-Square P-value 

Hepatitis Type 0.36 0.5470 

Educational Level 0.79 0.3750 

Hypertensive Status 0.85 0.3557 

Gender  0.48 0.4874 

Marital Status  2.54 0.1107 

Drugs  0.63 0.1774 

Diet Consumption 2.73 0.4271 

Liver status 0.34 0.2872 

Age  1.82 0.0984 

Liver size  0.07 0.7965 

Global Test 10.89 0.4525 

Source: Authors’ compilation. 
Table 4.2 presents the results for the proportional hazard assumption.  From the results, it was observed that all covariates, 

including the global test, satisfied the constant hazard assumption, as evidenced by the p-value > 0.05. Thus, the proportional 

(constant) hazard assumption was satisfied.   

Table 4.3: Model Comparison  

Regression Moel  Baseline Distribution AIC BIC 

PH Exponential  147.1171 202.217 

 Weibull 113.9035 171.6766 

 Gompertz 121.4703 180.2435 

AFT Exponential 147.1171 202.217 

 Weibull 113.9035 172.6766 

 Lognormal 112.4452 171.2184 

 Log logistics 112.8056 171.5788 

Source: Authors’ compilation. 

Table 4.3 presents the model comparison using the AIC and BIC selection criteria. From the results, it was 

observed that among the three PH models considered in this study, the Weibull PH model outperformed the 

exponential and Gompertz PH models due to the least values of AIC and BIC. However, among the four AFT 

models considered in this study, the lognormal AFT model performed better than the other three (exponential, 

Weibull and log logistics AFT models) as occasioned by the AIC and BIC. Overall, the lognormal AFT model 
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had the lowest values of AIC and BIC, indicating that it outperformed all the other six models considered in this 

study.  

Table 4.4: Parameter Estimate for Weibull PH Model  
Covariates Category Β HR SE Z P-value 

Hepatitis Type Hepatitis Type A Ref     

 Hepatitis B -0.5425 0.5813 0.3924 -0.80 0.422 

 Hepatitis C 0.2593 1.2960 1.1958 0.28 0.779 

Educational Level No Education  Ref     

 Primary -1.2787 0.2784 0.1997 -1.78 0.075 

 Secondary -0.5938 0.5522 0.2936 -1.12 0.264 

 Tertiary -0.1096 0.8962 0.7836 -0.13 0.900 

Hypertensive Status Negative  Ref     

 Positive -0.2249 0.7986 0.3109 -0.58 0.563 

Gender  Male Ref     

 Female -0.8368 0.4331 0.2657 -1.36 0.173 

Marital Status  Single Ref     

 Married -0.6537 0.5201 0.3425 -0.99 0.321 

Drugs  Yes  Ref     

 No 1.2992 3.6662 1.9410 2.45 0.014 

Diet Consumption Yes  Ref     

 No 0.7751 2.1709 1.0141 1.66 0.097 

Liver status Affected  Ref     

 Not affected -2.6121 0.0734 0.0620 -3.09 0.002 

Age   0.0223 1.0225 0.0216 1.05 0.293 

Liver size   -0.2788 0.7567 0.1379 -1.53 0.126 

Source: Authors’ compilation. 
The estimated covariates for the Weibull PH model are presented in Table 4.4. The Hazard Ratio (HR), which is simply the 

relative risk, was averaged during the trial. The HR < 1 indicates reduction in hazard, HR > 1 indicates an increase in hazard, 

and HR = 1 indicates no hazard.   

The B column provides the estimate of the regression parameters with the interpretation that the estimated coefficient of 

𝐵𝑖′𝑠 gives the expected changes in the log hazard ratio for every one unit increase in the corresponding covariates 𝑋𝑖′𝑠 when 

all other covariates are held constant.  In the selected model (Weibull proportional hazard), the variables drugs and liver 

status were significant factors, implying that drugs and liver status were the two factors that significantly contributed to the 

hazard of liver cirrhosis. However, the variable hepatitis, educational level, hypertension status, gender, marital status, diet 

consumption, age and liver size were not significant factors. 

The estimated coefficient for patients not on drugs was significant (B = 1.2992, HR = 3.6662, P < 0.05). HR > 1 

implies that patients who were not on drugs have an increased risk of dying from liver cirrhosis compared with 

those who were on drugs (reference category). In addition, the estimated coefficient for patients whose livers were 

not affected was significant at the 5% level (B = -2.6121, HR = 0.0734, p < 0.05). The HR < 1 implies that patients 

whose livers were not affected have a lower risk of dying from liver cirrhosis than those whose livers were 

affected.  

The estimated coefficients for hepatitis types B and C were not significant (B = -0.5425, HR = 0.5813, p> 0.05; 

B = 0.2593, HR = 1.2960, p > 0.05), respectively. The HR <1 for hepatitis type B implies that hepatitis B patients 

have a decreased hazard of dying from liver cirrhosis compared with hepatitis A patients, whereas hepatitis C 

patients have an increased hazard of dying from liver cirrhosis compared with hepatitis type A patients. 

The estimated coefficient for patients with primary education level (B = -1.2787, HR = 0.2787, p > 0.05) and 

secondary school level (B = -0.5938, HR = 0.5522, p > 0.05) were not statistically significant. The HR for all 

three categories was 1, implying that patients with primary, secondary, and tertiary liver cirrhosis had a lower 

hazard of liver cirrhosis than those with no formal education (reference group). 
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The estimated coefficient for patients with a positive hypertension status was statistically insignificant (B = -

0.2249, HR = 0.7986, p > 0.05). The HR < 1 implies that patients with a positive hypertension status have a lower 

risk of dying from liver cirrhosis than those with a negative hypertension status (reference group), although this 

difference is statistically insignificant. The estimated coefficient for female patients was statistically insignificant 

(B = -0.8368, HR = 0.4331, p > 0.05). The HR < 1 implies that female patients have a decreased hazard of dying 

from liver cirrhosis as compared to male (reference group), although this difference is statistically insignificant.     

The estimated coefficient for patients who were married was statistically insignificant (B = -0.6537, HR = 0.5201, 

p > 0.05). The HR < 1 implies that patients who were married have a lower risk of dying from liver cirrhosis than 

those who were single (reference group), although statistically insignificant. The estimated coefficient for patients 

who did not consume a diet was statistically insignificant (B = 0.7751, HR = 2.1709, p > 0.05). The HR > 1 

implies that patients not receiving diet have an increased hazard of dying from liver cirrhosis compared with those 

who were receiving diet (reference group), although this difference is statistically insignificant. 

The estimated coefficient for patient age was statistically insignificant (B = 0.0223, HR = 1.0225, p > 0.05). HR 

> 1 implies that an increase in the age of patients increases the hazard of dying from liver cirrhosis, although this 

finding is statistically insignificant. However, the estimated coefficient for liver size was statistically insignificant 

(B = -0.2788, HR = 0.1379, p > 0.05). The HR < 1 implies that an increase in liver size decreases the hazard of 

dying from liver cirrhosis, although statistically insignificant. 

Table 4.5: Parameter estimation for the lognormal AFT model 

Covariates Category Β TR SE P-value 

Hepatitis Type Hepatitis Type A Ref    

 Hepatitis B 0.3698 1.4474 0.2495 0.138 

 Hepatitis C 0.0944 1.0990 0.2910 0.746 

Educational Level No Education  Ref    

 Primary 0.5569 1.7453 0.2938 0.058 

 Secondary 0.1528 1.1651 0.1814 0.400 

 Tertiary -0.0415 0.9593 0.2814 0.883 

Hypertensive Status Negative  Ref    

 Positive -0.0239 0.9764 0.1615 0.883 

Gender  Male Ref    

 Female 0.2588 1.2954 0.1795 0.149 

Marital Status  Single Ref    

 Married 0.0860 1.0898 0.2271 0.705 

Drugs  Yes  Ref    

 No -0.3732 0.6885 0.1707 0.029 

Diet Consumption Yes  Ref    

 No -0.4476 0.6392 0.1653 0.007 

Liver status Affected  Ref    

 Not affected 0.8304 2.2942 0.2382 0.000 

Age   -0.0016 0.9984 0.0086 0.850 

Liver size   0.0674 1.0697 0.0553 0.223 

Source: Authors’ compilation. 

Table 4.5 summarizes the results of the analysis of the log-normal AFT model. Covariates with TR < 1 indicate 

decrease in survival time of the patients while those with TR > 1 indicate an increase in survival time. The 

covariates drugs and liver status were significant predictors of survival in patients with liver cirrhosis. 

The estimated coefficient for drugs was significant (B = -0.3732, TR = 0.6885, p < 0.05). The TR<1 indicates that 

patients that patients that were not on drugs had a shorter survival time compared with those who were on drugs 

(reference category). In addition, patients whose livers were not affected had an increased survival time compared 
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with those that were affected (B = 0.8304, TR = 2.2942, p < 0.05). This implies that patients with liver disease 

have a shorter survival time. 

The covariates hepatitis type, educational level, hypertension status, gender, marital status, diet consumption, age, 

and liver size were not statistically significant in predicting the survival time of patients with liver cirrhosis at 

5%.  

The estimated coefficients for hepatitis types A and B were not significant (B = 0.3698, TR = 1.4474, p > 0.05; B 

= 0.0944, TR = 1.0990, p > 0.05), respectively.  TR > 1 indicates that hepatitis types A and B increase the survival 

time of patients with liver cirrhosis compared with type A (reference group). 

The estimated coefficients for educational level of liver cirrhosis patients were not significant at 5% (B = 0.5569, 

TR = 1.7453, p > 0.05; B = 0.1528, TR = 1.1651, p > 0.05; B = -0.0415, TR = 0.9593, p > 0.05), respectively. TR 

> 1 for primary and secondary school levels indicates that liver cirrhosis patients with those levels of education 

have increased survival times as compared with those with no formal education (reference category), whereas 

tertiary level have TR <  1 indicating that those with tertiary level education have decreased survival times as 

compared with those with no formal education (reference category). 

The estimated coefficients for patients with liver cirrhosis whose hypertension status was positive were not 

statistically significant in predicting survival times (B = -0.0239, TR = 0.9764 p > 0.05). The TR < 1 though 

statistically insignificant, indicates that liver cirrhosis patients with a positive hypertension status had a shorter 

survival time than those with a negative hypertensive status. 

Females have an increased survival time compared with males (B = 0.2588, TR = 1.2954, p> 0.05), although 

statistically insignificant. Similarly, patients with liver cirrhosis who were married had increased survival times 

compared with those who were not married (B = 0.0860, TR = 1.0898, p > 0.05). In addition, an increase in liver 

size increased the survival time of the patients (B = 0.0674, TR = 1.0697, p> 0.05). 

However, patients without a good diet had a shorter survival time than those with a good diet, although this 

difference was statistically insignificant (B = -0.4476, TR = 0.6392, p > 0.05). Similarly, an increase in age tended 

to decrease the survival times of patients with liver cirrhosis (B = -0.0016, TR = 0.9984, p > 0.05), although 

statistically insignificant.         
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Figure 4.1: Overall model fit for the Weibull PH model. 

 
Figure 4.2: Overall model fit for lognormal AFT model. 

Cox–Snell residuals are one way to investigate the overall fit of the fitted models to data. The plots for the fitted 

residuals for the selected parametric Weibull PH model and parametric log-normal AFT model are presented in 

Figures 3.1 and 3.2, respectively. If the model fits the data well, then the plot of cumulative hazard function should 

line up with the Cox–Snell residuals. The plots for both models did not show a strong deviation, as they tended 

to make a straight line through the origin with little deviation at the tail end, suggesting that the selected models 

are appropriate for time-to-event analysis of liver cirrhosis data. 

6. Conclusions 

In this study, the performance of the AFT and PH models with some baseline distributions was examined using 

the frequentist approach. The right-hand censored liver cirrhosis data were used. Specifically, the performance of 

the parametric AFT model with four baseline distributions (exponential, Weibull, lognormal and log logistics) 

and the parametric PH model with three baseline distributions (exponential, Weibull and Gompertz) was 

evaluated. The results of the model comparisons indicated that the lognormal AFT model had the lowest AIC and 

BIC values and was selected as the optimal model. This finding agrees with the findings of a previous study by 

Shankar et al. (2019).   

The results from the optimal model (lognormal AFT model) revealed that liver cirrhosis that were not on drugs 

have decrease survival times. This implies that patients on drugs have longer survival times. In addition, liver 

status was a significant predictor of survival in patients with liver cirrhosis. Patients with liver disease have a 

shorter survival time. This indicates that patients with liver cirrhosis whose liver is not affected have an increased 

survival time.  

The overall model fit was evaluated using Cox-Snell residuals. The plots indicated a good fit as there was no 

strong deviation of the cumulative hazard from the Cox- Snell residuals.     

7. Summary    

The aim of this study was to fit an appropriate parametric survival model to right-censored liver cirrhosis data 

using the frequentist approach. The study used secondary data. The data were examined for proportional hazard 

assumptions, and the results revealed that the constant hazard assumption was met as the p-value for the global 

test was greater than 0.05. In order to achieve the objective, three PH models were compared (Exponential, 
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Weibull and Gompertz). The results revealed that the Weibull PH model outperformed the exponential and 

Gompertz PH models because it had the lowest AIC and BIC. 

Similarly, to achieve the two objective, four different AFT models (expandential, Weibull, logistic, and lognormal) 

were compared. The results demonstrate that the Lognormal AFT model outperformed the other three AFT 

models. The overall performance of the models (PH and AFT) was also evaluated. The results revealed that the 

lognormal AFT model had the least AIC and BIC values and hence outperformed the PH model.  

Based on the overall performance model, it was discovered that the drugs and liver status were significant 

predictors of survival in patients with liver cirrhosis.               

8. Conclusion 

The current study fitted an appropriate parametric model to liver cirrhosis data. The proportional hazard model 

and the accelerated failure time model were also considered. Based on the findings of this study, it was concluded 

that the lognormal accelerated failure time model performed better than the other models considered in this study. 

Based on this model, we concluded that drugs and liver status were significant predictors of survival in patients 

with liver cirrhosis.        

9. Recommendations 

Based on these findings, the following recommendations were made: 

i. The liver cirrhosis patients who were on drugs should adhere strictly to their medication as it increases 

their survival time. 

ii. According to these findings from this study, patients with liver cirrhosis should always carry out a liver 

function test to know the status of their liver and ensure that it is in good state.   

10. Limitations 

This study relied on secondary data obtained from an existing source; thus, the data may not be reliable. In 

addition, the study focused on a parametric survival model with a special interest in classical distribution; this 

model might not be sufficiently flexible to capture the hazard shapes in the data.   

11. Suggestions for Further Studies 

Based on the limitations of the study listed above, it was suggested that further studies employ flexible 

distributions capable of capturing different hazard shapes that exist in survival data.   
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Appendix A: Liver Cirrhosis Data 

Time Status HT EDUL HYPSTATUS Sex Marital Status Age Drugs Diet Liver status Liver size 

90 0 2 3 1 2 2 35 2 1 1 5.8 

121 0 2 3 1 1 1 33 1 2 1 8 

30 1 3 3 2 2 1 29 2 2 1 6.2 

30 0 1 4 1 2 2 30 1 1 2 6.45 

60 0 1 4 1 1 1 31 1 1 2 9.55 

30 0 3 3 2 1 1 21 2 2 1 7.32 

60 1 2 3 1 1 1 24 1 2 1 4.48 

31 0 3 4 1 2 2 33 1 1 1 5.14 

30 0 3 3 1 1 1 29 1 1 1 8.42 

60 1 1 3 1 1 1 30 2 2 1 10.1 

90 0 2 3 1 1 1 24 1 1 1 7.63 

60 0 2 3 1 2 2 28 1 1 2 6 

30 0 3 2 2 2 1 22 2 2 1 4.13 

30 0 2 3 1 2 1 18 1 1 2 6.31 

60 0 1 4 1 1 2 33 1 1 2 9.5 

90 0 1 3 1 2 1 31 1 1 2 6.42 

30 0 2 3 2 1 1 36 1 1 2 8.25 

30 0 2 3 1 2 2 32 2 2 1 5.55 

90 1 2 3 2 1 1 29 2 2 1 5.49 

90 1 2 2 1 2 1 24 2 2 1 3.14 

150 0 2 3 1 1 2 33 1 1 1 8.66 

181 1 3 3 2 1 1 24 1 2 1 6.3 

2 0 1 3 1 2 1 29 1 1 1 5.5 

91 0 2 2 1 2 1 21 1 1 1 6.15 

24 0 2 3 1 1 2 30 1 1 2 7.23 

29 0 2 3 1 1 1 31 2 2 1 9 
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