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 Global efforts to control and eradicate malaria are seriously threatened 

by the rising incidence of drug resistance among malaria parasites, 

especially resistance to Artemisinin-Based Combination Therapies 

(ACTs). With an emphasis on clarifying the patterns, trends, and 

treatment strategy implications, this dissertation conducts a thorough 

meta-analysis to assess the risk variables for malaria and ACT 

resistance. To offer solid statistical insights into the occurrence of 

resistance and its correlation with other factors, such as geographic 

location, treatment methods, and parasite genetics, this study 

synthesizes data from the body of current literature. This research 

adopts a systematic approach, using a random-effects meta-analysis 

framework to aggregate findings from peer-reviewed studies conducted 

between 2002 and 2024. Key outcomes include the pooled prevalence 

of ACT resistance and the estimated effect sizes of contributing risk 

factors, such as treatment delays, monotherapy use, and suboptimal 

adherence to ACT regimens. The analysis revealed a significant 

increase in malaria risk in populations with reported ACT resistance, 

with a mean effect size of 1.432 (95% CI: 1.193–1.720, P < 0.001). 

Substantial heterogeneity was observed among the studies, as indicated 

by an I² value of 90%.” The results indicate significant regional 

variation in resistance patterns, with Southeast Asia and parts of Africa 

showing higher prevalence rates linked to the presence of Plasmodium 

falciparum mutations, particularly in the kelch13 gene. The results 

emphasize the urgency of targeted interventions—like better 

monitoring systems, better diagnostic tools, and compliance with 

combination therapy guidelines—are needed. To properly modify 

treatment plans, this study highlights the cruciality of combining 

genetic surveillance with clinical and epidemiological data. To reduce 

the likelihood of ACT resistance and preserve the effectiveness of 

frontline malaria treatments, this dissertation offers researchers, 

policymakers, and medical professionals’ practical’ insights. Through 

its rigorous methodological approach and comprehensive analysis, this 

study contributes to the growing body of evidence on the challenges 

posed by malaria drug resistance and underscores the urgency of 

collaborative global efforts to address this public health crisis. 
 

                                                           
1,2,3,4Department of Statistics, Nasarawa State University, Keffi. 
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INTRODUCTION 

Malaria continues to pose a serious threat to global health, particularly in areas with poor infrastructure and 

resource availability. Millions of people worldwide suffer from malaria, a disease caused by Plasmodium 

parasites spread by the bite of an infected Anopheles mosquito. Sub-Saharan Africa bears a disproportionately 

greater burden. Even after decades of concentrated efforts to prevent and eradicate malaria, the disease still has a 

significant negative impact on socioeconomic advancement and public health. 

The widespread implementation of Artemisinin-based Combination Therapies (ACTs) has been one of the most 

successful strategies for reducing malaria cases and fatalities over the past 2 decades. Artemisinin and its 

derivatives, derived from the Artemisia annua plant, act rapidly to clear the malaria parasite from the bloodstream, 

and when combined with partner drugs, they reduce the risk of resistance developing against any one medication 

(Dondorp et al., 2010; White, 2008). ACTs are currently recommended by the WHO as the first-line treatment 

for uncomplicated Plasmodium falciparum malaria, the deadliest malaria species (WHO, 2015). The use of ACTs 

has led to significant reductions in the incidence of malaria, especially in high-burden countries (White et al., 

2014). 

However, the efficacy of ACTs is currently threatened by the emergence of artemisinin resistance. First detected 

in Cambodia along the Thailand–Cambodia border, artemisinin resistance has since spread throughout the Greater 

Mekong Subregion and has become a critical public health concern (Ashley et al., 2014). Studies have shown that 

artemisinin resistance is characterized by delayed parasite clearance, which is often observed as prolonged fever 

and longer treatment times in patients (Ashley et al., 2014; Noedl et al., 2008). The situation is further complicated 

by the emergence of partner drug resistance, which has led to cases of treatment failure, placing even greater 

pressure on healthcare systems in malaria-endemic regions (Dondorp et al., 2010). 

The mechanisms underlying artemisinin resistance are complex and involve mutations in the Plasmodium 

falciparum Kelch13 (pfk13) gene, which have been associated with reduced sensitivity to artemisinin in clinical 

settings (Ariey et al., 2014; Straimer et al., 2015). The spread of these mutations has raised concerns regarding 

the sustainability of ACTs in their current form. Without effective anti-malarial drugs, malaria control and 

elimination goals may be unattainable, because drug resistance can lead to increased treatment failure rates, 

prolonged illness, higher transmission rates, and a rise in severe cases and deaths (Dondorp et al., 2009; Fairhurst 

and Dondorp, 2016). 

Given the rapid evolution of drug resistance, there is an urgent need to systematically assess the prevalence and 

impact of resistance patterns in malaria treatment. A meta-analysis can help synthesize findings from several 

studies to better understand global trends in artemisinin resistance, identify regions where resistance is increasing, 

and evaluate the effectiveness of different ACT regimens. Such an analysis would provide valuable insights to 

inform policy decisions and guide future research on drug resistance (Higgins & Green, 2011). 

This dissertation conducts a comprehensive meta-analysis on the risk of malaria and drug resistance in patients 

taking ACTs. By consolidating existing research, this study aims to provide a clear understanding of the 

prevalence, distribution, and impact of drug resistance in ACTs, highlighting the area’s most at risk, and 

suggesting strategies to combat resistance. As the world edges approach malaria elimination, maintaining the 

effectiveness of ACTs is essential. Addressing the growing threat of drug resistance will require coordinated 

global efforts, including the development of new anti-malarial agents, enhanced surveillance systems, and 

updated treatment protocols that can adapt to changing resistance patterns (White et al., 2014; WHO, 2020). 

Malaria, caused by Plasmodium parasites transmitted through infected Anopheles mosquito bites, remains a major 

global health threat, particularly in tropical and subtropical regions. Despite progress in malaria control, the 

disease still leads to substantial morbidity and mortality, especially in sub-Saharan Africa, where over 90% of 
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cases and deaths occur, disproportionately affecting young children and pregnant women. Malaria has severe 

socioeconomic impacts and contributes to poverty, malnutrition, and impaired development in affected areas. 

Research Design 

The research design chosen for this study is a meta-analysis, that systematically reviews and synthesizes the 

results of multiple empirical studies to address the research question on the risk of malaria and resistance to ACTs 

in malaria parasites. Meta-analysis allows for the quantitative integration of findings across different studies, 

providing a comprehensive overview of the evidence, identifying patterns, and establishing the strength of 

associations. This study uses a random-effects model to account for variations among studies and to provide a 

more generalized estimate of the effects of drug resistance on malaria outcomes. 

Meta-analyses are ideal for this purpose because they aggregate data from various studies to increase statistical 

power and resolve uncertainties that individual studies may not address. The design follows PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, ensuring a rigorous and transparent 

review process (Moher et al., 2009). 

Population, Sample, and Sampling Techniques 

The study population for this meta-analysis consisted of peer-reviewed studies that assessed malaria resistance to 

artemisinin-based combination therapy in various regions, particularly Southeast Asia and sub-Saharan Africa. 

The purposive sampling technique was used, focusing on studies published between 2002 and 2024 that met 

specific inclusion criteria: 

i.  Plasmodium falciparum resistance to ACT 

ii.  Clinical trials or observational studies with relevant data on resistance mutations (e.g., PfK13 mutations), 

iii.  Studies with sufficient data for effect size estimation, such as sample size and, risk 

Ratio, odd ratio, mean, standard deviation, confidence intervals and treatment outcomes. 

The inclusion of diverse geographical areas and population types ensures broad applicability of the results. The 

sample size for this meta-analysis will be determined by the number of relevant studies identified through the 

systematic search process. Each study’s key data are extracted for the synthesis. 

Method of Data Collection 

Using a standardized data extraction form, pertinent information was extracted from eligible papers for the meta-

analysis. Study parameters (e.g., author, publication year), study methodology, geographic location, parasite 

species, treatment resistance markers, and prevalence estimates are important factors of interest. To reduce bias, 

two reviewers will extract data independently; if any differences are noted, they will be discussed.  

Data Analysis Technique 

The data analysis involved synthesizing the extracted data using meta-analysis techniques. The primary outcome 

of interest was the effect size e.g OR, which quantifies the relationship between drug resistance and malaria 

outcomes. After extracting data from various studies, they are synthesized using statistical Softwares like 

Comprehensive Meta-Analysis (CMA), STATA, and R.   

Statistical Techniques: Meta-analytical techniques, such as forest plots, heterogeneity tests, and subgroup 

analyses, will be used to assess the variability in resistance patterns across regions. Cochran’s Q and the I² statistic 

will be employed to quantify heterogeneity among the included studies (Higgins et al., 2021). A funnel plot will 

be used to visually inspect publication bias, and Egger' s test will statistically assess the bias in the included 

studies. 

Random-effects Model: This model accounts for heterogeneity between studies and provides more generalizable 

results (Borenstein et al., 2009). 

Heterogeneity Analysis: Using the I² statistic to quantify the percentage of total variation across studies due to 

heterogeneity rather than chance (Higgins et al., 2003). 

Publication Bias: Assessed using funnel plots and Egger’s test (Egger et al., 1997). 
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Prevalence estimates of drug resistance will be pooled using random-effects or fixed-effects meta-analysis 

models, depending on the heterogeneity of the included studies (Higgins et al., 2009).  

Effect Size Estimation: The effect size was calculated to determine the magnitude of the ACT resistance risk 

across different studies. For this meta-analysis odds ratios (ORs) will be used as the primary effect size metrics 

for binary outcomes (such as treatment failure vs. success). The following formula is used for effect size 

estimation: 

The pooled prevalence of ACT resistance in malaria parasites was estimated using random-effects meta-analysis 

models. The random-effects model accounts for both within-study and between-study variability, providing more 

conservative estimates of effect sizes than fixed-effects models (Borenstein et al., 2010). The DerSimonian-Laird 

method was used to calculate the overall effect size, along with 95% confidence intervals. 

Random-Effects Meta-Analysis 

Due to the anticipated heterogeneity among the included studies, a random-effects model was applied to estimate 

the pooled effect sizes. The random effects model assumes that the true effect size varies from one study to another 

due to differences in population characteristics, geographical regions, and methods used in the studies (Borenstein 

et al., 2021). This model provides a more conservative and generalizable estimate of the overall effect size. 

Naturally, in a real meta-analysis, we begin with the observed effects and attempt to estimate the population 

impact, as opposed to starting with the population effect and making projections about the observed effects. We 

computed a weighted mean, where the weight allocated to each research equals the inverse of that study' s 

variance, to produce the most accurate estimate of the overall mean (to minimize the variance).  

To compute the variance of a study under the random-effects model, we must know both the within-study variance 

and τ2. The random-effects model assumes that the true effect size varies between studies because of random 

factors. The two sources of variance are considered: 

Within-study variance    The variation in effect sizes is due to sampling error. 

Between-study variance (τ2): The variation due to true differences among study populations, methodologies, etc. 

Mathematical Steps: 

i) Effect Sizes  

Each study (i) has an observed effect size  (e.g., odds ratio, risk ratio, mean difference). 

ii) Within-Study Variance  

The within-study variance is the variance of the effect size in each study, typically derived from the standard error 

(SEi) of the effect size as follows: 

                                                                         (3.1) 

iii) Estimating the Tau-squared 

The parameter τ2 (tau-squared) is the between-study variance (the variance of the effect size parameters across 

the population of studies). In other words, if we somehow knew the true effect size for each study and, computed 

the variance of these effect sizes (across an infinite number of studies), this variance would be τ2.  

Between-Study Variance (τ2): To calculate the between-study variance, τ2 we use the DerSimonian and Laird 

estimator:  

        (3.2)       

                            (3.3) 

Where; 

             df = k - 1,            (3.4)  
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Here, k is the number of studies, and                     

         (3.6)  

   iv) Heterogeneity (H): The Q-statistic exceeds the degrees of freedom (number of studies  

    Minus one, df = k-1), it indicates heterogeneity. 

   v) Weight for Random Effects: 

    n the random-effects model, the weight wi for each study is the inverse of the total variance as 

    follows: 

     (within-study variance and between-study variance τ2, ): 

              (3.7) 

   vi) Pooled Effect Size: 

    The pooled estimate of the effect size, , is a weighted average of individual effect sizes as  

    follows: 

                                                           (3.8) 

vii) Confidence Interval for Pooled Effect Size: 

    The 95% confidence interval (CI) of the pooled effect size was calculated as follows: 

                                                   (3.9) 

                                                     (3.10) 

viii) Forest Plot 

A forest plot is a graphical representation of individual study effect sizes and the overall pooled effect. The plot 

shows the confidence intervals (CIs) for each study’s effect size, as well as the pooled estimate. 

Individual Study Effect Size: The individual study effect size is , and its variance is , giving the 95% CI 

for each study: 

                                                     (3.11) 

Pooled Effect Size: The pooled effect size  is calculated as explained in the above random-effects model. 

Visual Interpretation: The center of each square in the forest plot represents the study’s point estimate  

The horizontal lines represent the 95% confidence interval (CI) for each study, indicating the precision of the 

estimate. 

The diamond at the bottom represents the pooled effect size  with the width of the diamond reflects the pooled 

CI. 

ix) Assessment of Heterogeneity: 

Heterogeneity among studies was assessed using the I-squared (I2) statistic, which quantifies the proportion of 

total variation across studies due to heterogeneity rather than chance. I2 values > 50% indicate substantial 

heterogeneity (Higgins et al., 2003). Subgroup analyses were conducted to explore potential sources of 

heterogeneity, such as study location, study design, and drug resistance assessment methods. 

      x) Subgroup Analyses:  

 

Subgroup analyses were performed to investigate potential sources of heterogeneity and to explore variations in 

drug resistance prevalence across different subgroups of studies. Subgroup analyses were conducted based on 

factors such as study location (e.g., geographical region, endemicity), study design (e.g., cross-sectional studies, 

longitudinal studies), and drug resistance assessment methods (e.g., molecular methods, phenotypic methods). 
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Subgroup analysis divides studies into subgroups based on specific characteristics (e.g., age, gender, study design) 

and calculates the effect size within each subgroup. 

Separate Effect Sizes for Subgroups: For each subgroup, calculate the pooled effect size using the above 

random-effects model described above 

                                    (3.12) 

Interaction Test: To test for differences between subgroups, use an interaction test. This method compares effect 

sizes across subgroups and assesses whether they differ significantly: 

The difference between the subgroup effect sizes is tested for statistical significance, typically using the Q-test 

for heterogeneity between subgroups. 

xi) Sensitivity Analyses: 

Sensitivity analyses were conducted to assess the robustness of the findings to variations in study quality, 

methodology, and inclusion criteria. These analyses test how results change when studies with high heterogeneity 

or potential biases are excluded. This step is crucial for validating whether the pooled effect size is not overly 

influenced by outlier studies. 

Sensitivity analysis involves re-running the meta-analysis by excluding one or more studies, changing the model 

assumptions, or applying different weighting schemes. 

Mathematical Steps: 

Leave-One-Out Analysis: Sequentially exclude each study and recalculated the pooled effect size as follows: 

                                            (3.13) 

Alternative Models: You may rerun the meta-analysis using a different model (e.g., fixed-effects) to determine 

whether the results are robust to the choice of model. The fixed-effects model assumes that all studies estimate 

the same true effect size as follows: 

                                               (3.14) 

xii) Publication Bias Assessment: 

Publication bias will be assessed using funnel plots, in which the effect sizes from individual studies are plotted 

against their corresponding standard errors. A symmetrical funnel shape indicates a low risk of publication bias, 

whereas asymmetry suggests potential bias (Egger et al., 1997). Additionally, Egger' s regression test and Begg' 

s rank correlation test will be conducted to statistically evaluate the presence of publication bias. 

A funnel plot was used to detect publication bias by plotting each study’s effect size against its precision (inverse 

of the standard error). 

Precision: 

a) Precision is typically the inverse of the standard error of the effect size in each study: 

                            (3.15) 

b) Funnel Plot Symmetry: 

In the absence of publication bias, studies will be distributed symmetrically around the pooled effect size. 

Small studies have wider CIs and thus scatter more widely, whereas larger studies (with higher precision) cluster 

near the pooled effect size. 

c) Egger’s Test: 

Egger’s test for publication bias examines the relationship between effect size and study precision as follows: 

                                         (3.16) 

                                        (3.17) 

Data Presentation 

This section presents information on the risk of malaria and resistance to artemisinin-based combination 

treatments (ACTs) in a methodical manner based, on pertinent research that was included in the meta-analysis. 
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The studies were identified through a rigorous literature search, and the key characteristics are summarized below 

(e.g., author, year, effect size, lower and upper interval). 

Author Year Odd Ratio Lower CI Upper CI 

Lyda et al. 2007 6.9 2.6 18.4 

Akintude et al. 2010 2.13 1.44 3.15 

Andreas et al. 2015 0.37 0.22 0.6 

Jose et al. 2015 0.92 0.86 0.99 

Solange et al. 2016 1.92 1.3 2.82 

Solange et al. 2017 1.2 0.52 2.8 

Kyaw et al. 2018 6.9 2.6 18.4 

Solange et al. 2019 1.25 0.78 2 

Cho et al. 2019 2.5 1.08 5.8 

Makoto et al. 2019 1.67 1.42 1.96 

Prabi et al. 2020 1.16 1.08 1.25 

Makoto et al. 2020 1.14 1.03 1.26 

Minh et al. 2021 6.96 2.55 19.02 

Salehe et al. 2024 1.28 1.08 1.51 

    Table 4.1: Literature Search Results 

Fig 4.1 Flow Chart 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

213 studies identified through 

electronic search of Databases: 

Google Scholar, PubMed, 

MEDLINE, and Malaria Journals 

 

83 studies were identified after 

removing duplicate publications and 

irrelevant 

28 studies excluded not meeting the 

inclusion criteria 

 

 

55 studies screened 

 

 

26 studies assessed for eligibility 

 

 

14 included Studies  

 

 

Twelve studies excluded:                                  

4 Not uncomplicated malaria, 3 

   Non-ACT treatments                      

2 Eliminated by STATA, and                           

3 Eliminated by CMA Statistical 

Software 

 

Studies excluded from not having 

complete information (n = 29) 

 

 

Studies removed: (n=130) 

74 ineligible and 56 duplicates                                                         
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Figure 2. PRISMA (preferred reporting items for systemic reviews and meta-analysis) flow      chart for the 

screened studies.  

Figure 2 above showed that 213 articles were assessed, out of which 74 were ineligible and 56 were duplicates. 

The number of studies screened was 55, out of which 29 were retrieved. The articles assessed for eligibility were 

26, out of which 4 were not on uncomplicated malaria, 3 were non-ACT treatments, and 5 were eliminated by the 

Statistical Softwares (STATA, CMA). Finally, 14 studies were included. 

Data Analysis and Results 

Figure 4.2 displays forest plots showing the effect sizes (ORs), for the risk of malaria linked to varying degrees 

of anti-malarial drug resistance. To enable visual comparison, each line displays the estimated effect size and 

confidence intervals for resistance to artemisinin-based combination treatments (ACTs) and the risk of malaria in 

each research. 

Figure 4.2: Forest Plot of Odds Ratios for Malaria Risk 

 
Heterogeneity Assessment  

Heterogeneity measures were, calculated from the data with Confidence Intervals based on the gamma (random-

effects) distribution for Q. 

Table 4.2 

  Measure                           Value              df            p-value 

   Cochran’s Q                    136.56             13           0.001 

                                                             -[95%   Conf.  Interval]-                                 

    H            3.24           1.000            3.96 

    I2                                                        90%                  0.0%            93.6% 

 

H = relative excess in Cochran' s Q over its degrees of freedom 

I² = proportion of total variation in effect estimate due to between-study heterogeneity (based on Q) 

Table: Heterogeneity Variance Estimates 

Method tau2 

DL 0.073 
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Subgroup Analysis 

Subgroup analysis explores how treatment effects vary across different groups (e.g., by age, gender, study, design, 

time). It helps identify effect modifications (i.e., whether the effect differs in different populations). The subgroup 

analysis was performed by comparing studies conducted before and after 2015) in Table below. 

Table 4.2.2: Subgroup Analysis 

 
Tests of subgroup effect size = 1: 

0                    z = 1.676  p = 0.094 

1                    z = 11.004  p = 0.000 

Overall,      z = 11.424  p = 0.000 

Figure 4.2.1: Subgroup Meta-Analysis 

 

                                                                    

Overall, DL                3.318      2.701     4.076     100.00

                                                                    

Subgroup, DL               3.164      2.577     3.884      95.77

                      

Salehe(2024)               3.597      2.945     4.527      12.75

Minh(2021)               1053.634    12.807    1.8e+08      0.06

Makoto(2020)               3.127      2.801     3.525      14.16

Prabi(2020)                3.190      2.945     3.490      14.45

Makoto(2019)               5.312      4.137     7.099      11.80

Cho(2019)                 12.182      2.945   330.300       0.72

Solange(2019)              3.490      2.181     7.389       6.43

Kyaw(2018)               992.275     13.464    9.8e+07      0.07

Solange(2017)              3.320      1.682    16.445       2.67

Solange(2016)              6.821      3.669    16.777       4.90

Jose(2015)                 2.509      2.363     2.691      14.60

Andreas(2015)              1.448      1.246     1.822      13.15

1                     

                                                                    

Subgroup, DL              16.979      0.619   465.928       4.23

                      

Akintude(2010)             8.415      4.221    23.336       4.16

Lyda(2007)               992.275     13.464    9.8e+07      0.07

0                     

                                                                    

Subgroup and author      exp(b)    [95% Conf. Interval]   % Weight

                                                                    

Overall, DL (I
2
 = 88.8%, p < 0.001)

Heterogeneity between groups: p = 0.321

Subgroup, DL (I
2
 = 89.8%, p < 0.001)

Salehe(2024)

Minh(2021)

Makoto(2020)

Prabi(2020)

Makoto(2019)

Cho(2019)

Solange(2019)

Kyaw(2018)

Solange(2017)

Solange(2016)

Jose(2015)

Andreas(2015)

1

Subgroup, DL (I
2
 = 27.8%, p = 0.239)

Akintude(2010)

Lyda(2007)

0

Subgroup and author

3.32 (2.70, 4.08)

3.16 (2.58, 3.88)

3.60 (2.94, 4.53)

1053.63 (12.81, 182087965.97)

3.13 (2.80, 3.53)

3.19 (2.94, 3.49)

5.31 (4.14, 7.10)

12.18 (2.94, 330.30)

3.49 (2.18, 7.39)

992.27 (13.46, 97953126.24)

3.32 (1.68, 16.44)

6.82 (3.67, 16.78)

2.51 (2.36, 2.69)

1.45 (1.25, 1.82)

16.98 (0.62, 465.93)

8.41 (4.22, 23.34)

992.27 (13.46, 97953126.24)

(95% CI)

exp(b)

100.00

95.77

12.75

0.06

14.16

14.45

11.80

0.72

6.43

0.07

2.67

4.90

14.60

13.15

4.23

4.16

0.07

Weight

%

7.45e-09 1 1.34e+08

NOTE: Weights and between-subgroup heterogeneity test are from random-effects model
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Table: Cochran' s Q-test for heterogeneity 

 
Note: between-subgroup heterogeneity was calculated using DL subgroup weights. 

Region Resistance Rate (%) Confidence Interval 

Sensitivity Analysis 
A sensitivity analysis allows us to test the robustness of the results by excluding certain studies and re-running 

the meta-analysis. One approach is to perform a leave-one-out sensitivity analysis. 

      Manual Sensitivity Analysis: Exclude individual studies and re-run the meta-analysis. 

Drop if author == "Kyaw (2018)" (1 observation deleted) 

Studies included: 13 

Meta-analysis pooling of aggregate data using the random-effects inverse-variance model with DerSimonian-

Laird estimate of tau² 

Table 4.2.4: Manual Sensitivity Analysis 

 
Test of overall effect = 1:    z = 11.426    p = 0.000 

Heterogeneity measures calculated, from the data with Conf. Intervals based on the gamma (random-effects) 

distribution for Q 

 
H = relative excess in Cochran' s Q over its degrees of freedom 

I² = proportion of total variation in effect estimate due to between-study heterogeneity (based on Q) 

                                                                  

Between                     0.98        1      0.321

Overall                   116.57       13      0.000      88.8%

1                         108.08       11      0.000      89.8%

0                           1.38        1      0.239      27.8%

                                                                  

Measure                    Value      df      p-value       I²

                                                                  

                                                                    

Overall, DL                3.302      2.691     4.054     100.00

                                                                    

Salehe(2024)               3.597      2.945     4.527      12.77

Minh(2021)               1053.634    12.807    1.8e+08      0.06

Makoto(2020)               3.127      2.801     3.525      14.19

Prabi(2020)                3.190      2.945     3.490      14.48

Makoto(2019)               5.312      4.137     7.099      11.81

Cho(2019)                 12.182      2.945   330.300       0.72

Solange(2019)              3.490      2.181     7.389       6.41

Solange(2017)              3.320      1.682    16.445       2.65

Solange(2016)              6.821      3.669    16.777       4.88

Jose(2015)                 2.509      2.363     2.691      14.64

Andreas(2015)              1.448      1.246     1.822      13.17

Akintude(2010)             8.415      4.221    23.336       4.14

Lyda(2007)               992.275     13.464    9.8e+07      0.07

                                                                    

author                   exp(b)    [95% Conf. Interval]   % Weight

                                                                    

                                                         

I² (%)                     89.5%      0.0%     96.4%

H                          3.088     1.000     5.295

                                   [95% Conf. Interval] 

Cochran's Q               114.45       12      0.000

                                                         

Measure                    Value      df      p-value

                                                         



Economics and Statistics Research Journal (ESRJ) Vol. 16 (1) 
 

pg. 11 

Table 4.2.6: Heterogeneity variance estimates 

 
Figure 4.2.2: Heterogeneity Estimates 

  
Leave-One-Out Sensitivity Analysis: This analysis sequentially excludes one study at a time to determine whether 

the overall effect changes. 

Table 4.2.7: Leave one out.  

 
Figure 4.2.3: Leave one out chart. 

                                   

DL                        0.0736

                                   

Method                     tau²

                                   

Overall, DL (I
2
 = 89.5%, p < 0.001)

Salehe(2024)

Minh(2021)

Makoto(2020)

Prabi(2020)

Makoto(2019)

Cho(2019)

Solange(2019)

Solange(2017)

Solange(2016)

Jose(2015)

Andreas(2015)

Akintude(2010)

Lyda(2007)

author

3.30 (2.69, 4.05)

3.60 (2.94, 4.53)

1053.63 (12.81, 182087965.97)

3.13 (2.80, 3.53)

3.19 (2.94, 3.49)

5.31 (4.14, 7.10)

12.18 (2.94, 330.30)

3.49 (2.18, 7.39)

3.32 (1.68, 16.44)

6.82 (3.67, 16.78)

2.51 (2.36, 2.69)

1.45 (1.25, 1.82)

8.41 (4.22, 23.34)

992.27 (13.46, 97953126.24)

(95% CI)

exp(b)

100.00

12.77

0.06

14.19

14.48

11.81

0.72

6.41

2.65

4.88

14.64

13.17

4.14

0.07

Weight

%

7.45e-09 1 1.34e+08

NOTE: Weights are from random-effects model

------------------------------------------------------------------------------

 Combined          |   2.8031823      2.6829707    2.9287802

-------------------+----------------------------------------------------------

 13                |   2.7730489      2.6516352    2.900022

 12                |   2.8027115      2.6825182    2.9282901

 11                |   2.7516172      2.6242094    2.885211

 10                |   2.6749783      2.5415769    2.8153813

 9                 |   2.7550991      2.6353962    2.880239

 8                 |   2.8017616      2.6815906    2.9273179

 7                 |   2.7999947      2.6796153    2.925782

 6                 |   2.80248        2.6822114    2.9281414

 5                 |   2.7948761      2.6748252    2.9203153

 4                 |   3.0744035      2.8972301    3.2624114

 3                 |   2.9092493      2.7811081    3.0432949

 2                 |   2.7950749      2.6750565    2.9204781

 1                 |   2.802676       2.6824841    2.9282529

-------------------+----------------------------------------------------------

 Study omitted     |   Estimate       [95%  Conf.  Interval]

------------------------------------------------------------------------------
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Conclusions 

The analysis was based on 14 studies. The effect size index is the odds ratio. The findings in this study are 

discussed in the following sub-topics.  

Statistical Methods 

The random-effects model was used for the analysis. The studies in the analysis are assumed to be a random 

sample from a universe of potential studies. This analysis is, used to infer that universe. (Borenstein, 2019; 

Borenstein et al., 2010; Borenstein et al., 2021; Hedges & Vevea, 1998; Higgins & Thomas, 2019). 

Heterogeneity measures (I² statistics) provide the basis for the selecting random-effects models as the statistical 

strategy for the meta-analysis. The I2 statistical analysis; a value of > 50% indicated significant variability across 

investigations. The I-squared statistic is 90%, which indicates that 90% of the variance in observed effects reflects 

variance rather than sampling errors.  

Overall Effect Size 

The overall pooled odds ratio for the risk of malaria associated with ACT resistance was calculated. The results 

revealed a significant increase in the risk of malaria in populations with reported ACT resistance, the mean effect 

size was 1.432 with a 95% confidence interval of 1.193 to 1.720. The mean effect size in the universe of 

comparable studies could can decline anywhere in this interval. 

The Z-value test the null hypothesis that the mean effect size is 1.000. The Z-value was 3.845 with p < 0.001. 

Using a criterion alpha of 0.050, we reject the null hypothesis and conclude the following: that in the universe of 

populations comparable to those in the analysis, the mean effect size is not precisely 1.000. 

Heterogeneity Analysis 

The I² statistic was 90%, indicating substantial heterogeneity among the studies. This suggests that variations in 

study designs, populations, and methodologies may have Influenced the results. Heterogeneity measures 

calculated, from the data with Confidence Intervals based on Gamma (random-effects) distribution for Q. The Q-

statistic tests the null hypothesis that all of the studies in this analysis share a common effect size.  If all studies 

had the same true effect size, the expected value of Q is equal to the degrees of freedom (the number of Studies 

minus 1).  

The Q-value was 136.560 with 13 degrees of freedom and p < 0.001. Using a criterion alpha  

of 0.100, we reject the null hypothesis that the true effect size is the same as that in all these studies. 

  2.54   2.80  2.68   2.93   3.26
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 2
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 Lower CI Limit  Estimate  Upper CI Limit

 Meta-analysis estimates, given named study is omitted
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Heterogeneity Variance Estimates: Tau-squared, the variance of true effect sizes is 0.073., In log units. Tau (the 

standard deviation of true effect sizes), is 0.271 in log units. 

The prediction interval: Assuming that the true effects are normally distributed (in log units), the prediction 

interval was estimated to be 0.768 - 2.673. The true effect size in 95% of all comparable populations fall in this 

interval. 

Sensitivity Analysis 

Excluded from the sensitivity analysis were studies with high risk of bias. Recalculating the pooled odds ratio 

was a 2.10 (95% CI: 1.65–2.67), suggesting that the results held up well after excluding high-bias studies. 

Publication Bias Assessment 

Egger's test and funnel plots were used to assess the existence of publication bias. Egger's test (p = 0.04) supported 

the funnel plot's (Figure 4.3) suggestion of some asymmetry, suggesting possible bias in study publishing. 

Figure 4.3: Funnel Plot for Publication Bias 

 
Interpretation of Results 

The results show a worrying correlation between resistance and anti-malarial drugs (ACTs) and a higher risk of 

malaria, especially in Sub-Saharan Africa and West Africa. These findings support previous research that found 

comparable patterns, highlighting the urgency of overcoming ACT resistance in malaria prevention. 

Public Health Implications 

The implications of this study for public health are significant. As resistance to ACTs continues to emerge, 

treatment regimens must be revised to incorporate newer therapies or alternative approaches to malaria 

management. Policymakers should prioritize research funding to better understand resistance mechanisms and 

develop new interventions. 

Mechanisms of Resistance 

Genetic alterations in the malaria parasite and environmental factors influencing the kinetics of transmission are 

biological factors that lead to resistance. It is essential to comprehend these systems to develop tactics that 

effectively reduce resistance. 

Limitations of the Included Studies 

Many studies included in this meta-analysis have limitations, such as small sample sizes, variability in resistance 

definitions, and potential reporting biases. These factors may influence the reliability of the findings, necessitating 

cautious interpretation. 
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Summary 

The association between the risk of malaria and resistance to combination therapy based on artemisinin was 

thoroughly evaluated in this meta-analysis. The important discoveries are as follows: 

i. A pooled odds ratio indicating that ACT resistance significantly increases malaria risk. 

ii. The substantial heterogeneity among the studies emphasizes the need for region-specific strategies. 

iii. Evidence of publication bias, suggesting that some studies may not have been published because of negative 

results. 

Conclusion 

This study highlights a crucial public health concern regarding the rise in ACT resistance and how it affects 

malaria treatment. The results highlight the need for quick action to improve surveillance and create new treatment 

approaches to successfully fight malaria. 

Recommendations 

Based on the findings of this study, the following recommendations are made: 

i. For policy makers: policies to monitor and report on ACT resistance at national and regional levels. 

ii. For Researchers: Conduct further studies focusing on the molecular mechanisms of resistance and its 

epidemiological patterns. 

iii. For Health care Practitioners: Encourage continuous training on updated treatment protocols and the 

importance of adherence to recommended therapies. 

Limitations of the Study 

Although this meta-analysis offers insights, it is not without limitations: 

a. Data Availability: Reliance on published studies may introduce selection bias because, studies with null 

or negative findings are less likely to be published. 

b. Study design variability: Differences in study designs and methodologies can impact the comparability of 

results. 

c. Potential Biases: Various biases, including publication and reporting bias, may affect the limitations of 

the meta-analysis. 

Suggestions for Further Studies 

Future research should focus on 

a. Longitudinal studies to track trends in ACT resistance and its impact on malaria morbidity and mortality. 

b. Investigating alternative treatment options, including non-ACT therapies and combination strategies. 

c. Exploring socioeconomic and environmental factors that influence resistance patterns. 
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