INVESTIGATING THE TREND OF POPULATION GROWTH IN AKWA IBOM STATE USING GENERALIZED LINEAR MODELS
Abstract
This study investigated the trend of population growth in Akwa Ibom using generalized linear models. Annual population growth data were collected from the National Population Commission for the period of 2006 to 2023. The calculated natural increase revealed a positive trend in the natural increase in akwa ibm from 2006 to 2023. Evidence from summary statistics revealed some degree of over-dispersion (variance > mean). This study explored Poisson and Negative Binomial Regression Models using two links (identity and log). The results revealed a significant positive increase in population growth in the state among the models. Overall, negative binomial regression with identity link for population growth rate was superior among the competing models. Therefore, Data on numbers of population growth are essential if states are to determine priorities, develop and monitor policies for public health care, as well as other government policies that may be based on such data
Keywords:
Population Growth, Akwa Ibom, Generalized Linear Models, Negative Binomial Regression, Over-dispersionDownloads
Published
DOI:
https://doi.org/10.5281/zenodo.14749115Issue
Section
How to Cite
License
Copyright (c) 2025 Dr. Ibrahim Loko, Dr. Adenomeon Monday Osagie, Patience Friday Udott , Dr. Saleh Ibrahim Musa

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ayeni, O. and Olayinka, A. (2019): An Evaluation of a special-type of vital statistics. 2019 Registration System in a Rural Area of Nigeria. International Journal Epidemiol; 8(1): 61- 68.
Adekolu-John, E. O. (2019): A Study of Vital and Health Statistics of the Kainji Lake Area of Nigeria. Afr J Med Sci.; 17(3).
Akande, T. M., & Sekoni, O. O. (2015): A Survey on Birth Registration in a Semi-Urban Settlements in Middle-Belt Nigeria. European Journal of Scientific Research, 8(2): 37–44
Andrew, M. J. (2017): Models for health care. Health Econometric and data group. University of New York.
Bequele, A. (2015): Universal Birth Registration: The Challenge in Africa. The African Child Policy Forum. Paper Prepared for the Second Eastern and Southern Africa Conference Universal Birth Registration. Mombasa, Kenya. September 26-30.
Chukwu, A. U.; Oladipupo, E. O (2022): Modeling Adult Mortality in Nigeria: An Analysis Based on the Lee-Carter Model. Studies in Mathematical Sciences, 5 (2): 1-12.
Claudia, P.; Van, T. & Thanh T. (2016): Performance of models for estimating absolute risk difference in multicenter trials with binary outcome, Journal of Computational and Graphical Statistics, volume 19(3).
Eli, H. T.; Mohammed, I. D. & Amade, P. (2015): Impact of Population Growth on Economic Growth in Nigeria. OSR Journal of Humanities and Social Science (IOSR-JHSS), 20.
Eguda, S. O. (2016): Statistical Methods, Diocesan Printing Press, Anyigba, Kogi State.
Fox, J. (2014): Generalized Linear Models: An Introduction Sociology 740.
Gordon, J. (2023): SAS Software to Fit the Generalized Linear Model. Gordon Johnston, SAS Institute Inc., Cary, NC
Ian, C. M. (2022): Stable Computation of Maximum Likelihood Estimates in Identity Link Poisson Regression. Computational and Graphical Statistics, Vol. 19, issue 3 https://doi.org/10.1198/jcgs.2010.09127
Julie, B., & Simon, T. (2014): Multiple regression of cost data: use of generalized linear models. Computational and Graphical Statistics, 19 (2017), doi:10.1198/jcgs.2010.09127
Lindsey, K. J. (2023): Applying Generalized Linear Models. Springer texts in statistics.
Jungah, J. (2016): Using generalized linear models with a mixed random component to analyze count data. Kyungpook National University.
Martin, J. (2023): Birth Rates, Population Growth and the Economy.
Kafková, S. & křivánková, l. (2014): Generalized Linear Models in Vehicle Insurance. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 62(2): 383–388.
Linda, D. A. et al. (2019): Statistical Technique in Business and Economics. Eleventh Edition, McGraw-Hill, Irwin.
Lokonon, E. B. (2015): Generalized linear models with Poisson family: applications in ecology. University of Oradea Calavi Faculty of Agronomic Science
Michael, W.; John, N. & Genevera, I. A. (2019): Dynamic Visualization and Fast Computation for Convex Clustering via Algorithmic Regularization. Computational and Graphical Statistics, volume 19, issue 3. https://github.com/DataSlingers/clustRviz
Mikkelsen, L; Philips, D.E. and Abouzahr, C. (2015): A global assessment of Civil Registration and Vital Statistics Systems: monitoring data quality and progress.
Momodou, F. (2012). The Essence of Births and Deaths Registration. Article Published in the Daily Observer on Tuesday, January 24, 2012. http://observer.gm/africa/gambia/article/the-essence-of-births-registrations
Murray, C. Y. L. (2015): The Data for health initiative: Improving the Accessibility and Quality of Health data
Meng, C.; Jay, B. F.; Jennifer, N. S.; Abu, C. & Michael, C. G. (2018): Understanding the drivers of sensitive behavior using Poisson regression from quantitative randomized response technique data, plos one | https://doi.org/10.1371/journal.pone.0204433
National population Commission (NPC) Nigeria and ICF Macro. Nigeria Demographic and Health Survey (2018), Abuja, Nigeria.
National Population Commission Abuja, UNICEF, Report on Vital Registration in Nigeria 1994- 2017. A Publication of the National Population Commission, Abuja, 2010. www.population.gov.ng/publications.
Olumide, S. A.; Dawud, A. A.; Pelumi, E. O. & Tolulope, F. C. (2019): Bayesian Models for Zero Truncated Count Data. Asian Journal of Probability and Statistics 4(1): 1-12.
Population growth (2016): Trends, Projections Challenges and Opportunities. http://planningcommission.nic.in/reports/wrkpapers/wp_hwpaper.pdf
Sourish, D. & Dipak, K. D. (2007): On Bayesian Analysis of Generalized Linear Models: A New Perspective. Statistical and Applied Mathematical Sciences Institute PO Box 14006 Research Triangle Park, NC 27709-4006, www.samsi.info
Shengkun, X. & Anna, T. L. (2018): Estimating Major Risk Factor relativity in Rate Filings Using Generalized Linear Models. International journal of financial. Volume 6(84).
Sunil, K. S. (2013): Generalized additive models in business and economics. International Journal of Advanced Statistics and Probability, 1 (3) 64-81.
Tobin, E. A.; Obi, A. I. and Isah, E. C. (2013): Status of birth and death registration and associated salters in the South-South region of Nigeria, Annals of Nigeria Medicine, 7(1): 3 -7.
Thomas, S. R.; James, M. R. & Linbo, W. (2016): On Modeling and Estimation for the Relative Risk and Risk Difference. Biostatistics, Harvard School of Public Health.
Turner, H. (2008): Introduction to Generalized Linear Models, ESRC National Center for Research Methods, UK – WU, 2018-04-22-24.
Tobias, L. & Roland, F. (2017): An R package for analyzing count time series following generalized linear models. Journal of Statistical Software November, Volume 82(5).
United Nations Children’s Fund, Every Childbirth Right Inequities, and Trends in Birth Registration UNICEF, New York, 2013 http://www.unicef.org/esaro/5480_birth_registration.html
United Nations Development, Status of Civil Registration, and Vital Statistics in the SADC Region. A Technical Report of the United Nations Department of Economic and Social Affairs Statistics Division, 20 June 2010. http://unstats.un.org/unsd/demographic
World Health Statistics (WHS) Report (2019): Retrieved from http://www.whs.net/whosis/en/ on 01-07-2020
World Bank Group (2014). Global Civil Registration and Vital Statistics.http://www_wds_worldbank.org/external/default/WSDContentserver/WDSP/IB/2014/05/28/000456286_2014.PDF
Agresti, A. (2015). Foundations of Linear and Generalized Linear Models. Wiley.
McCullagh, P., & Nelder, J. A. (2019). Generalized Linear Models (2nd ed.). Chapman and Hall.
Hilbe, J. M. (2011). Negative Binomial Regression (2nd ed.). Cambridge University Press.
Dobson, A. J., & Barnett, A. (2018). An Introduction to Generalized Linear Models (4th ed.). CRC Press.
Cameron, A. C., and P. K. (2013). Regression Analysis of Count Data (2nd ed.). Cambridge University Press.
Hardin, J. W., & Hilbe, J. M. (2018). Generalized Linear Models and Extensions (4th ed.). Stata Press.
Long, J. S. (2017). Regression Models for Categorical and Limited Dependent Variables. Sage Publications.
Lindsey, J. K. (2020). Applying Generalized Linear Models. Springer.
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression (3rd ed.). Wiley.
Kleinbaum, D. G., & Klein, M. (2010). Logistic Regression: A Self-Learning Text. Springer.
National Population Commission (NPC), Nigeria. (2022). Demographic and Health Survey 2021. Retrieved from https://www.population.gov.ng
World Bank. (2021). World Development Indicators. Retrieved from https://data.worldbank.org.
United Nations. (2020). World Population Prospects 2019. Retrieved from https://population.un.org.
Akaike, H. (2021). A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
Anderson, D. R., & Burnham, K. P. (2004). Model Selection and Multimodel Inference. Springer-Verlag.
Dean, C. B., & Nielsen, J. D. (2007). Generalized Linear Mixed Models: A Review and Some Extensions. Lifetime Data Analysis, 13(4), 497–512.
National Bureau of Statistics (NBS), Nigeria. (2022). Statistical Report on Nigeria’s Demographics. Retrieved from https://www.nigerianstat.gov.ng.
United Nations Children’s Fund (UNICEF). (2021). The State of the World's Children. Retrieved from https://www.unicef.org.
Olaniyan, O., A. Soyibo, and A. O. (2012). Demographic Transition and Economic Development in Nigeria. The African Economic Research Consortium.
Ekeocha, C. O., and Ozurumba, B. A. (2020). Trends in Fertility and Mortality Rates in Nigeria. African Journal of Economic Policy, 27(1), 95–110.
Uddin, M. T., & Khondker, B. H. (2020). Infant Mortality and its Determinants in Nigeria: A GLM Approach. Journal of Public Health, 42(2), 345–360.
Udjo, E. O. (2008). A Reassessment of Demographic Trends in Nigeria. South African Journal of Demography, 11(2), 29–48.
Nigeria Bureau of Economic Analysis. (2021). Birth and Death Registration Statistics. Government Publications.
Hox, J. J., Moerbeek, M., & van de Schoot, R. (2017). Multilevel Analysis: Techniques and Applications (3rd ed.). Routledge.
Särndal, C. E., & Lundström, S. (2005). Estimation in Surveys with Nonresponse. Wiley.
Blangiardo, M., & Cameletti, M. (2015). Spatial and Spatiotemporal Bayesian Models with R-INLA. Wiley.
World Health Organization (WHO). (2021). Global Health Observatory Data Repository. Retrieved from https://www.who.int/data/gho.
Little, R. J., & Rubin, D. B. (2020). Statistical Analysis with Missing Data (3rd ed.). Wiley.
Zeileis, A., & Kleiber, C. (2008). Applied Econometrics with R. Springer.
Nigeria Demographic and Health Survey 2023-24. (2023). The DHS Program. Retrieved from https://dhsprogram.com/pubs/pdf/PR157/PR157.pdf.