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 Network intrusion detection remains a critical challenge as cyber 

threats continue to evolve in complexity and scale. This study 

investigates the application of big data analytics for intrusion detection 

using the UNSW-NB15 dataset. Apache Hive was used for large-scale 

querying and feature analysis, while PySpark was used for advanced 

analytics, including descriptive statistics, correlation, hypothesis 

testing, and dimensionality reduction. A RF classifier was developed 

and evaluated for both binary and multi-class intrusion detection tasks. 

The experimental results demonstrate a 99.99% accuracy in binary 

classification and 98.62% in multi-class classification, highlighting the 

effectiveness of combining Hive and PySpark for scalable intrusion 

detection. These findings underscore the importance of big data 

frameworks in strengthening cybersecurity defence systems.  1 
 

 

1. Introduction 

The proliferation of digital technology and internet connectivity has resulted in a huge increase in cyber risks, 

with network intrusions being the most serious and damaging threat faced by modern enterprises (Chen et al., 

2019). Figure 1 depicts the amount of damage caused by cybercrime reported to the IC3 between 2001 and 2020 

(Federal Bureau of Investigation, 2021). The annual loss of complaints referred to the IC3 in the most recent 

period was US$4.2 billion. These alarming statistics highlight the crucial need to install effective intrusion 

detection systems (IDS) to protect important data and resources from various cyber-attacks. As described by 

Aminanto et al. (2017), by identifying malicious activity, providing early warnings, and permitting fast 

countermeasures, intrusion detection systems (IDS) serve a critical role in detecting and minimising the impacts 

of cyber-attacks, Due to the obvious reason that cyber threats are becoming more sophisticated, ongoing 

developments in IDS are required to keep up with the dynamic threat landscape, assuring the security of 

enterprises and individuals against the ever-increasing risk of cybercrime (Wang et al., 2018). Figure 2 displays 

intrusion detection, in which the firewall operates as an intrusion detector located among several networks, 
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filtering data that may constitute a threat (Alrawashdeh & Alhamid, 2020). Although it is feasible to improve 

network security, by employing the use of IDS, the ability of traditional intrusion detection systems (IDS) to 

handle and analyse large amounts of network traffic data in real time is limited. As a result, there is a growing 

demand for more resilient and adaptive network security solutions, which can be accomplished by using big data 

analytics methods (Mell, 2015). 

 

    Figure 1 the Internet Crime Complaint Centre (IC3) from 2001 to 2020 Statistics 

 

Figure 2 Network security system 

Big data analytics have emerged as an indispensable element in diverse domains, encompassing network security. 

The introduction of distributed computing platforms, such as Apache Hadoop and Apache Spark, has altered the 

approach of researchers and professionals to the administration of large datasets, allowing for unequalled speed 

and efficacy in data processing and analysis. Furthermore, Apache Hive provides a solid foundation for running 

SQL-like queries on large datasets, easing the process of deriving important insights from big data. The objective 

of this study is to perform a thorough examination of network intrusion detection using big data analytics. The 

study will concentrate on the execution of Apache Spark and Apache Hive on the UNSW-NB15 dataset. This 

study aims to utilise various analytical techniques to extract meaningful patterns and associations from the dataset. 
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The obtained findings will be applied in constructing a classifier model for binary and multi-classification of the 

identified attack types. 

1.1 Objectives 

This study aims to explore the potential of big data analytics to improve the identification and categorisation of 

network intrusions. Our objective is to achieve the following goals: 

 We employed Apache Hive for big data queries and analysis on the UNSW-NB15 dataset to generate 

insights for end users. This requires a thorough comprehension of the dataset, the development of Hive queries, 

the use of relevant visualisation tools, and the presentation of findings both numerically and graphically, as well 

as brief interpretations. 

 Analyse and interpret UNSW data using at least four analytical methods, such as descriptive statistics, 

correlation, hypothesis testing, and density estimation, to acquire insights into the dataset's underlying patterns 

and relationships. 

 Design and develop a binary and multi-classifier RF model for attack type classification, leveraging the 

insights gained from the analytical methods. 

 Evaluation of both binary and multi-class classifier models using different evaluation metrics, such as 

accuracy, precision, recall, and F1-score. 

1.2 Apache Spark 

Apache Spark is a powerful distributed computing solution that analyses massive amounts of data efficiently by 

using in-memory caching and optimised query execution. Spark is an adaptable and scalable solution for big data 

processing, with a rich library suite that includes MLlib for machine learning, GraphX for graph processing, and 

Spark Streaming for real-time data processing. It is accessible to developers and academics worldwide because it 

is open-source, enabling continual progress and innovation in the field of distributed computing. It is an excellent 

platform for big data analytics in network intrusion detection because of its inherent fault tolerance, scalability, 

and extensibility (Chowdhury et al., 2011). Apache Spark was used to execute the analytical techniques and 

construct the classifier model. The MLlib library offered by Spark presents an extensive range of ML algorithms 

that enable diverse analytical methods for the UNSW-NB15 dataset and the creation of the RF classifier model. 

 

                                                                                 Figure 3 Advantages of Spark 
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1.3 Apache Hive  

Apache Hive is a data warehousing solution that has been developed on the Hadoop Distributed File System 

(HDFS). Facilitates the storage and administration of voluminous datasets in a distributed setting. Hive provides 

a query language, referred to as HiveQL, that bears resemblance to SQL (Apache Hive TM, 2011). This language 

enables users to perform intricate queries on vast datasets without the need for advanced programming 

proficiency. The combination of Apache Hive and Apache Spark improves the efficacy and expedites the 

execution of big data analytical assignments, making it an indispensable instrument in our scholarly inquiry. This 

study employs Apache Hive as a tool for large-scale data querying and analysis on the UNSW-NB15 dataset. 

Multiple Hive queries are executed to extract pertinent features, preprocess the data, and conduct exploratory data 

analysis. The insights derived from these queries serve as the foundation for the subsequent implementation of 

the analytical methods and the development of the classifier model. 

 

Figure 4 Apache Hadoop Ecosystem 

2. UNSW Dataset 

Researchers from the University of New South Wales and the Australian Centre for Cyber Security created the 

UNSW-NB15 dataset to provide a thorough network traffic dataset that is tailored to assess the efficacy of 

network intrusion detection systems (Moustafa, n.d.). The dataset comprises more than 2.5 million records, each 

of which corresponds to a network connection. The records have 49 features, including the source and destination 

IP addresses, protocols, and payload characteristics, that encompass different aspects of the connection. The 

UNSW-NB15 dataset includes various attack types, including denial of service (DoS), remote code execution 

(RCE), and brute force attacks. The dataset includes a label that indicates the type of attack and a binary label that 

distinguishes between ordinary and malicious connections. The dataset’s intricate and varied character makes it 

a strong option for evaluating big data analytics approaches in the network intrusion detection domain. Figure 4 

shows the normal and attack distributions in the dataset. From the chart, we can see that the most common attack 

is the generic attack, followed by the exploit, fuzzer, and DDO attacks. 
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Figure 5 Distribution of normal and attack labels 

2.1 Attack Types 

The UNSW-NB15 dataset contains a diverse range of attack types classified into nine main classes. The 

aforementioned categories represent many expressions of cyber dangers, providing a thorough portrayal of the 

challenges experienced by computer networks’ intrusion detection systems. The following sections provide a 

concise summary of each assault type found in the dataset: 

 Fuzzers: Fuzzers are attacks that produce and transmit random, flawed, or invalid inputs to a target system 

to cause unexpected behaviour, crashes, or security vulnerabilities. 

 Analysis: Analysis attacks focus on identifying and exploiting weaknesses in target systems. In these 

assaults, scanning the network for open ports, services, or applications, as well as testing systems for flaws, is 

common. Examples of analysis attacks include port scanning, OS fingerprinting, and vulnerability scanning. 

 DoS: Denial of Service attacks seek to impair the availability of a network, service, or application by 

overwhelming it with excessive traffic or resource usage. DoS attacks can be carried out via various techniques, 

including SYN flood, ICMP flood, and HTTP flood. The primary purpose of these assaults is to make the target 

system inaccessible or ineffective, causing inconvenience to its users. 

 Exploit: Exploit attacks employ known weaknesses in software, hardware, or protocols to gain 

unauthorised access, control, or privileges within a target system. These attacks frequently rely on the availability 

of public or private exploit code and can result in arbitrary code execution, data exfiltration, or system penetration. 

 Generic: Generic attacks cover various approaches that do not fit into any particular category. These 

attacks may include network traffic manipulation, unauthorised data access, or the exploitation of legitimate 

system capabilities. Generic attacks can provide particular challenges to network intrusion detection systems due 

to their diversity. 

 Reconnaissance: Reconnaissance attacks gather information about a target network, system, or 

organisation in order to discover possible targets for future assaults. Passive techniques, such as eavesdropping 

on network traffic, and active approaches, such as DNS enumeration or social engineering, can be used in these 

assaults. 

Comprehending the various attack types and their unique characteristics is crucial in the creation of effective 

NIDS. This enables the development of models that can accurately differentiate between benign and malicious 

network traffic patterns and classify attacks according to their respective categories. This study explores the 

diverse attack categories present in the UNSW-NB15 dataset to establish a RF framework for both binary and 
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multi-classification objectives. This study aims to enhance the ability to detect and classify network intrusions for 

rapid identification. 

3. Big Data Query and Analysis using Apache Hive 

Big data analytics are critical in identifying and mitigating cyber threats, particularly in the domain of network 

intrusion detection. This study presents the results of our data analysis on the UNSW-NB15 dataset using Apache 

Hive queries. The goal of this study is to convert unprocessed data into useful information for end recipients and 

to draw meaningful conclusions from the data. We use Hive queries to perform various analyses and provide the 

results in both numerical and graphical representations. 

3.1 Query 1: Top 5 attack categories by count 

The primary objective of our preliminary investigation is to determine the five most common attack categories 

based on their frequency. To accomplish this task, we execute the following query on Apache Hive: 

 

Figure 6 Query: Top 5 Code Attacks 

This query selects the attack category and enumerates the occurrences of each attack type. It also identifies the 

attack category and records the number of instances of each attack type. We deliberately ignore “benign” traffic 

in our query because it does not represent harmful activities. The query then groups the results by attack category 

and displays them in descending order according to the attack count. The output only includes the top five results. 

 

Figure 7 Top 5 Attack Labels 

According to the results of this query, the “generic” attack category is the most common, accounting for 215,481 

attacks. Following this are “Exploits” (44,525), “Fuzzers” (19,195), “DoS” (16,353), and “Reconnaissance” 

(12,228). Figure 8 shows a bar chart created with Python’s Seaborn package to visually depict the findings. In the 

UNSW-NB15 dataset, the “Generic” attack category is by far the most common type of attack. 

3.2 Query 2: Top 10 source group with IP involved in the attacks 
Our analysis aims to identify and pinpoint the top 10 source group with IP implicated in attacks by analysing the 

frequency of the observed source IP addresses.  The following query was implemented to accomplish this task: 
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Figure 8 Query: Top 10 source IPs involved in attacks 

This query retrieves the source IP addresses and counts each occurrence. By filtering out non-attack traffic with 

the label field, we ensure that only malicious activities are considered. The results are then grouped by source IP, 

sorted by attack count in descending order, and limited to the top IP entries. The results of this query show that 

the source IP '175.45.176.1' is the most common, with 117,908 assaults. '175.45.176.3' (106,418), '175.45.176.0' 

(74,279), and '175.45.176.2' (22,678) follow. 

 

Figure 9 Top 10 source IPs involved in attacks 

To visually present these findings, a bar chart created with the Seaborn library in Python is employed, as displayed 

in Figure 9. The graph highlights that the top three source group with IP contribute to a significantly higher 

number of attacks than the remaining source group with IP in the dataset. This information is crucial in 

understanding the behaviour of the most active attackers and devising strategies to mitigate their occurrences. 

3.3 Query 3: Attack distribution according to protocol 

This query examines the attack distribution by protocol. This query focuses on the protocol column and counts 

the number of attacks for each protocol by excluding malicious traffic with a Label of 1 (i.e., malicious traffic 

with a Label of 1 The results are then categorised by protocol and based on the number of attacks, ordered in 

descending order. Finally, the output is restricted to the top 25 protocols with the most attacks. 
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Figure 10 Query: Attack distribution by protocol 

UDP is the most targeted protocol, with 223,750 reported attacks, followed by TCP (58,184) and UNAS (16,202). 

These findings are visually represented in Figure 11, which displays a bar plot of the attack distribution by 

protocol. The results of this analysis provide valuable insights into the behaviour of attackers targeting specific 

network protocols. These data can be used to inform the design and setup of intrusion detection systems, which 

can be tailored to detect and mitigate assaults on various protocols. Furthermore, this analysis lays the groundwork 

for future research into the vulnerabilities and hazards associated with various network protocols, allowing for 

the creation of more effective security measures. 

 

Figure 11 Attack distribution by protocol 

3.4 Query 4: Average duration and total byte count per category of attack 

This analysis aims to ascertain the average duration and total byte count of attacks in the UNSW-NB15 dataset 

for each attack category, as shown in Figure 12. This query selects the attack type and calculates the average 

duration and total byte count for each category while eliminating benign traffic using a WHERE clause. The 

findings are then categorised by attack category, sorted in descending order based on total byte count, and 

displayed in tabular form. 
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Figure 12 Query: Average duration and total byte count per category of attack 

The bar and line plots are used together to visualise the results, as shown in Figure 13. The graph shows the 

overall byte count for each assault category, with the average duration represented by a line plot. The entire byte 

count is shown on the left y-axis, and the average time is shown on the right y-axes, respectively. According to 

the findings, the attack categories with the highest total byte counts are "Exploits," "DoS," and "Generic." 

“Fuzzers,” “Exploits,” and “DoS” have the longest average durations. These findings have significant 

implications for designing and implementing security measures in each category to detect and mitigate attacks. 

 

 

Figure 13 Average duration and total byte count per attack category 

3.5 Query 5: Proportion of attacks with a non-zero response body length, grouped by the attack 

category 

The following query was created to analyse the proportion of attacks in the UNSW-NB15 dataset with non-zero 

response body length for each attack category. The query selects the attack category and computes the total 

number of assaults, number of attacks with a non-zero response body length, and percentage of attacks with a 

non-zero response body length for each category, omitting the ‘benign’ traffic category. The findings are then 

tabulated and organised by attack category and ranked in descending order according to the percentage of attacks 

with a non-zero response body length. 
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Figure 14 Query: Proportion of attacks with a non-zero response body length, grouped by the attack category 

The analysis attack type had the highest percentage of attacks with a non-zero response body length, followed by 

“Worms” and “Exploits.” This implies that the presence of a non-zero response body length is more connected 

with certain types of attacks than others. On the other hand, the “Fuzzers,” “Reconnaissance,” “Shellcode,” and 

“Backdoors” attack categories have a very low percentage of attacks with a non-zero response body length. These 

findings can be used to create more effective intrusion detection and prevention systems that consider each attack 

category’s unique characteristics, allowing for improved cyber threat defence. 

 

Figure 15 Proportion of attacks with non-zero response body length, grouped by attack category 

4. Advanced Analytics Using PySpark 

Big data analysis and interpretation are critical components of data science and are used to derive important 

insights from massive amounts of data. To gain a better understanding of the data, various analytical techniques, 

such as descriptive statistics, correlation, hypothesis testing, and density estimation, must be employed. PySpark 

was used to analyse and interpret the UNSW-NB15 dataset using at least four analytical methodologies. 
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4.1 Descriptive Summary 

A descriptive analysis is a statistical analysis in which the main features of a dataset are summarised and 

described. The purpose of descriptive analysis is to provide a high-level overview of the dataset, highlight 

potential flaws or patterns, and inform subsequent studies. The initial step in descriptive analysis is to identify 

which of the dataset’s numeric columns may be studied. In this task, 39 columns were chosen, comprising 

information such as the source and destination ports, connection length, and amount of bytes exchanged. 

Summary statistics, such as the count, mean, standard deviation, minimum, and maximum values, have been 

computed using these columns. The summary statistics were produced in PySpark using the describe() method, 

which generates a DataFrame containing the summary statistics for each numeric column. The toPandas() method 

was used to convert the Spark DataFrame to a Pandas DataFrame for easier display and analysis. The results 

showed that the 'dur' variable has a mean of 0.6588 s and a maximum of 8786.6377 s, indicating that the dataset 

has some unusually long durations. The “sbytes” variable has a mean of 4340.07 bytes and a maximum of 

14355774 bytes, indicating various packet sizes. The “ct_srv_src” and “ct_srv_dst” variables have a maximum 

value of 67, which suggests that a few sources and destinations are responsible for a large number of connections. 

Overall, by analysing the summary statistics, we can obtain an idea of the range of values for each numeric column 

and the distribution of values across the dataset. 

 

Figure 16 Descriptive analysis results 

4.2 Hypothesis testing 

Hypothesis testing is a statistical tool for determining whether observed differences in sample data are real or 

random variation. In this task, we investigate the possibility of a statistically significant difference in the mean 

value of the “dur” characteristic between normal and attack traffic. Following the null and alternative hypotheses 

for this task: 

 The null hypothesis (H0): The mean “dur” value is the same for both normal and attack traffic. 

 Alternative hypothesis (HA): The mean “dur” value is different for normal traffic and attack traffic. 

The “dur” values for both regular and intrusive network traffic are collected from the dataset to test the hypothesis. 

The t-statistic and p-value were then computed using a two-sample t-test. The t-test assumes that the data follows 

a normal distribution and that both groups’ variances are comparable. 
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Figure 17 Hypothesis testing code 

The null hypothesis is rejected when the p-value is less than the preset significance level, commonly set at 0.05. 

Boxplot of ‘dur’ attribute for both normal and attack traffic was created to visualise the results of the hypothesis. 

Figure 18 illustrates the median, interquartile range, and outliers for each group, as well as the p-value. In this 

case, the p-value was 0.0018, which is less than the significance level. As a result, the null hypothesis was rejected, 

indicating that normal and attack traffic have different means, as corroborated by the median 'dur' value of the 

plot, which is greater for normal traffic than for attack traffic. 

 

Figure 18 Hypothesis test boxplot 

4.3 Correlation 

The Pearson correlation was implemented to understand the relationship between numerical features in the 

UNSW-NB15 dataset. Pearson’s correlation coefficient is a statistical measure that quantifies the magnitude and 

direction of a linear association between two variables (Turney , 2022). The values for Pearson correlation 

coefficient ranges from -1 to 1, where a value of -1 signifies a complete negative correlation, indicating that as 

one variable increases, the other decreases. A value of 1 indicates a perfect positive correlation, indicating that 

both variables increase or decrease together, and a value of 0 indicates no correlation. The categorical variables 

were eliminated from the dataset, and the correlation between the numerical features was assessed to identify 
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highly correlated features. In the code, we used the drop() method to eliminate categorical variables from the 

dataset and the VectorAssembler() function to create a correlation assembler. The Correlation.corr() function was 

then used to calculate the Pearson correlation coefficient and the results were recorded in a data frame. Finally, 

we printed out highly correlated pairs of characteristics (correlation coefficient > 0.8 or -0.8) as shown in Figure 

22. 

 

Figure 19 Correlation coefficient 

 

Figure 20 Correlation Graph of the 
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Figure 21 Highly Correlated Features 

The results show that numerous numerical features are highly associated with one another. For example, the 

correlation coefficient between “sloss” and “sbytes” is 0.95, indicating a strong positive correlation between these 

two features. Similarly, the correlation coefficient between “dloss” and “dbytes” is 0.99, whereas it is 0.96 for 

“ct_srv_dst” and “ct_srv_src.” Furthermore, some features are significantly connected with two or more other 

features, such as “Dpkts,” which is highly correlated with both “dloss” and “Spkts,” with correlation values of 

0.99 and 0.82, respectively. 

 

Figure 22 Correlation Plot 
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4.4 Principal component analysis (PCA) 

PCA is a technique used to reduce the dimensionality of data. This technique involves identifying patterns in data 

and then translating the data into a space with fewer dimensions (Volpi, 2020). The goal is to maintain as much 

diversity in the original data as possible. Simply put, these assists in identifying the major factors that account for 

the dataset’s variability.  For this task, the PCA was used on the UNSW dataset. The Vector Assembler was 

created to assemble all data columns into a single feature column. The data are then reduced to two dimensions 

using PCA with k = 2. The resulting two dimensions are saved in the pca_features column, as shown in Figure 

23. 

 

Figure 23 PCA code 

The explained variance, which is a measure of how much variation in the original dataset is retained by each 

primary component, is calculated. The first principal component (PCA 1) covers 99.88% of the variation in the 

UNSW dataset, whereas the second principal component (PCA 2) captures only 0.12%. This shows that the first 

principal component can explain the majority of the variation in the dataset and that the second principal 

component is less important in explaining the variation in the data, as shown in Figure 24 by the scatterplot which 

used to visualise the data in the new two-dimensional space created by PCA. 

 

Figure 24 PCA Component Scatter Graph 
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5. Classification Model 

Classification is a supervised learning strategy that uses a categorical variable as the goal variable. It involves 

using a labelled dataset to train a model and predicting the class label for future cases. The RF algorithm is an 

ensemble learning strategy that builds numerous decision trees and aggregates their output to enhance overall 

prediction accuracy and avoid overfitting. This method has several advantages, including noise resistance, 

overfitting resistance, and the capacity to handle large datasets with many features. As a result, the RF technique 

is commonly utilised for classification tasks such as network intrusion detection. The utilisation of classification 

algorithms is critical in enhancing the efficacy of IDS by successfully differentiating between distinct categories 

of activity. For this task, our primary goal is to create classifiers for binary and multi-class classification using 

the RF method, a powerful ensemble learning approach that has demonstrated amazing precision and durability 

in a variety of ML scenarios. 

5.1 Binary classification  
The classification issue in network intrusion detection can be treated as a binary or multi-class problem. The 

algorithm differentiates between two classes: normal traffic and attack traffic. The initial step is to generate an 

index for the categorical target variable, which is then used to create a feature vector with numeric features. Then, 

the dataset is partitioned into an 80% training set and a 20% testing set using a randomised seed. The 

RandomForestClassifier is created using features and indexed target columns. A parameter grid is formulated to 

assess various permutations of the number of trees (numTrees) and the maximum tree depth (maxDepth) 

(RandomForest—PySpark 3.4.0 Documentation, n.d.) to enhance the model’s performance. Cross-validation is 

used to train the model and assess its efficacy on data that has not been previously observed. The results were 

evaluated using different evaluation metrics, such as accuracy, precision, recall, f1-score, and confusion matrix. 

Table 1 summarises the results of the binary classification using the Random Forest classifier, with values 

expressed as percentages. 

        Table 1. Binary Classification Results 

Class Precision Re-call F1Score Support 

Normal (0.0) 1.00 1.00 1.00 443,683 

Attack (1.0) 1.00 1.00 1.00 64,623 

Accuracy   1.00 508,306 

Macro Avg 1.00 1.00 1.00 508,306 

Weighted Avg 1.00 1.00 1.00 508,306 

By comparing the random forest classifier outputs to the evaluation criteria, we achieved a binary classification 

accuracy of 99.99%, demonstrating the usefulness of the algorithm for intrusion detection. The RF classifier had 

a precision score of 99.99%, recall score, and F1-score of 99.99%. These findings demonstrate the classifier’s 

excellent performance in discriminating between normal and attack traffic in the UNSW-NB15 dataset. Figure 

25 depicts the confusion matrix for binary classification, which provides more insight into the performance of the 

random forest classifier. The diagonal elements of the matrix indicate that all the data points are correctly 
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categorised and there was not a single misclassified data. Overall, the confusion matrix indicates the capacity of 

the RF classifier to correctly categorise the normal and attack labels on the UNSW-NB15 dataset. 

 

Figure 25. Binary classification confusion matrix. 

 

Figure 26. Binary classification code. 

5.2 Multiclassification  

Similar to binary classification, the RF classifier was used for multi-classification problems, except that the 

StringIndexer used to index the category column was changed from “label” to “attack_cat” and VectorAssembler 

was used to assemble all numerical features into a single “features” column. Using an 80-20 split ratio, the data 

was then divided into training and test sets. The performance of the model was evaluated using the same 

evaluation metrics.  Table 2 shows that the model achieved an overall accuracy of 0.98, suggesting that it correctly 

classified most cases in the dataset. Furthermore, the table shows that the model had differing degrees of success 

in recognising traffic from various classes. While the model performed exceptionally well in identifying classes 

such as benign, generic, fuzzy, and DoS, it struggled to correctly classify instances of several other classes, such 

as backdoors and worms, which can also be seen through the confusion matrix, as shown in Figure 27. Overall, 

the model may not be adequate for identifying specific types of network attacks, and additional study and fine-

tuning may be required to improve its performance. It is also worth noting that the class imbalance of the dataset 

may have contributed to the poorer precision and recall scores for some classes, as some of these classes had on 

average only 30–500 data points. Overall, the results indicate that the RF can be a useful tool for detecting specific 
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types of network attacks, but its performance may be limited by the nature of the data and the specific attack types 

being targeted. 

Table 2. Multiclassification Results 

Class Precision Re-call F1Score Support 

Benign 1 1 1 443683 

Generic 1 0.98 0.99 43458 

Exploits 0.57 0.97 0.72 8887 

Fuzzers 0.78 0.87 0.83 3839 

DoS 0.81 0.02 0.04 3268 

Reconnaissance 0.84 0.68 0.75 2445 

Fuzzers 0.94 0.18 0.3 1043 

Analysis 0.81 0.13 0.22 567 

Backdoor 0.7 0.02 0.04 339 

Reconnaissance 0 0 0 341 

Shellcode 0.76 0.56 0.65 261 

Backdoors 0 0 0 95 

Shellcode 0 0 0 37 

Worms 1 0.02 0.05 43 

Macro Average 0.66 0.39 0.4 508306 

Weighted Average 0.99 0.98 0.98 508306 

 

Figure 27 Multiclassification confusion matrix 
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Discussion 

This study reinforces the role of big data analytics in addressing the scalability and accuracy challenges of IDSs. 

Traditional IDS solutions fail to efficiently manage large-scale traffic; however, the integration of Hive and 

PySpark provides both computational speed and analytical depth. The RF model delivered near-perfect binary 

classification accuracy, confirming its robustness for distinguishing normal from malicious traffic. Multi-class 

results, while strong overall, revealed limitations in detecting minority attack classes such as backdoors and 

worms. This suggests the need for further work on class imbalance, ensemble methods, or hybrid DL models. 

The analysis of traffic by source IPs, protocols, and attack categories provides practical insights for security 

practitioners in prioritising defence strategies. 

6. Conclusion 

This study demonstrates that combining Apache Hive and PySpark significantly enhances the effectiveness of 

NID systems. The proposed framework achieved state-of-the-art accuracy in both binary and multi-class scenarios 

by leveraging the UNSW-NB15 dataset. The findings confirm that big data tools can scale intrusion detection to 

meet modern network demands while providing interpretable analytical insights. Future research should focus on 

addressing class imbalance, incorporating real-time detection, and exploring deep learning–based extensions to 

further strengthen IDS capabilities. 
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