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Introduction
The COVID-19 pandemic has revealed the vulnerabilities of global medical supply chains. The surge in demand
for critical, often perishable, items, such as vaccines and personal protective equipment (PPE), exposed profound
inefficiencies in traditional distribution models, leading to critical shortages in some areas and oversupply in
others. A key lesson is the need for an integrated approach that simultaneously optimizes the strategic placement
of facilities location the quantity of supplies held at each inventory point and the dynamic routing of goods
transshipment under highly uncertain, time sensitive conditions.
The development of COVID-19 vaccines was a monumental scientific achievement. However, its public health
impact was contingent on an equally complex logistical challenge: the rapid, global distribution of a perishable
commodity under intense demand uncertainty. For instance, an mRNA vaccines have strict and short thermal
stability outside cold storage, creating a use it or lose its reality. Bottlenecks plagued the initial phases of the
rollout, leading to the risk of vaccine spoilage and critical treatment delays. Traditional SC models, which often
focus on deterministic flows and treat location and inventory problems separately, are ill equipped to handle this
stochastic, time sensitive environment.
This study addresses this gap by developing a comprehensive multi echelon queuing theoretic framework that
integrates these decisions. Our model is specifically designed for the distribution of time sensitive medical
supplies, where exceeding a maximum response time T can render a vaccine ineffective or lead to a life
threatening shortage. Building on the foundational work of Yang et al. 2013 we model each distribution center
as an M (n)/D/o queuing system. This allows us to accurately capture the stochastic nature of demand arrival and
service times. The key innovations of the model are the incorporation of lateral transshipments, which allows
stock to be shared between peer facilities to quickly address local surges and the explicit management of pipeline
stocks from central suppliers.
The primary research question is: How can a multi echelon medical supply network be designed to minimize total
cost while guaranteeing a high probability of meeting strict, time sensitive delivery windows during a pandemic?
2. Literature Review
The coronavirus disease 2019 (COVID-19) pandemic served as a stark stress test for global medical supply
chains, exposing critical vulnerabilities in the logistics of distributing time sensitive medical supplies. A
significant body of research has documented the widespread disruptions. For instance, Moosavi et al. (2022) [3]
analyzed potential disruption management strategies, highlighting the need for resilience in the face of such
shocks. The literature specific to COVID- 19 vaccine distribution consistently highlights several interconnected
challenges: stringent and unbroken cold chain requirements Lee et al.,, 2021), profound demand
uncertainty during rollout phases, and the logistical nightmare of last -mile distribution to vaccination centers.
Studies in low resource settings further emphasize systemic weaknesses. In their assessment of Delta State,
Nigeria, Taigbenu et al. (2025) [2] explicitly detailed how cold chain limitations, workforce shortages, and
community hesitancy led to a decline in immunization coverage, demonstrating how pre-existing system frailties
are exacerbated during a pandemic. Similarly, Haidari et al. [2016] used simulation to show that optimizing the
location of storage facilities could dramatically improve vaccine availability in low and middle income countries.
Although these studies excellently describe the problems and some strategic level solutions, a recognized gap
exists in quantitative, prescriptive models that can dynamically optimize inventory and transshipment decisions
across a multi -tiered network under the real world constraint of a strict, time sensitive usable window for
prepared vaccines.
However, the application of queuing theory has largely been confined to the service delivery point within a
healthcare facility. Research that extends queuing models upstream into the supply chain and inventory
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management processes that feed these service points is scarce. Berman and Larson (2001) introduced spatial
queuing for emergency vehicle deployment, but its application to medical supply chains is limited. The use of
queuing theory to model a network of distribution centers and vaccination hubs as an integrated system of
interconnected queues, where the "service" is the fulfillment of a vaccine order, remains underexplored. Recent
studies, such as Arora et al. (2021), have begun applying queuing models to vaccination centers for capacity
planning, but they stopped at the clinic door. This paper bridges that gap by modeling the entire supply network
using multi echelon queuing systems like M(n)/D/o as inspired by Yang et al. [2013], to capture the stochastic
nature of demand and replenishment lead times across all levels, not just the final service point.

This research builds directly upon the literature on integrated inventory-transshipment. The work of Yang et al.
[2013] on Service Parts Inventory Control with Lateral Transshipment and Pipeline Stock Flexibility is
particularly relevant because it provides a queuing based analysis for a similar base stock (S- 1, S) record point
inventory control policy system.

This study aims to address four critical gaps in the existing literature on supply chain management and health
care logistics. First, it confronts the lack of integrated, quantitative optimization models for pandemic vaccine
distribution that can dynamically handle the pervasive stochastic demand and supply. Second, it extends the
traditional application of queuing theory within clinical settings by extending it to model the entire upstream
medical supply network as a multi echelon queuing system. Third, it introduces explicit, hard time based service
level constraints intoSLT the supply chain model, a feature that is critical for managing perishable commodities
like vaccines but often absent from existing integrated models. Finally, it specifically investigates the
underutilized potential of lateral transshipment as a dynamic strategy for mitigating shortages of highly perishable
medical supplies during a pandemic outbreak.

3.0 Problem formulation and mathematical model

3.1 Problem formulation

We consider a multi echelon supply network in Delta central senatorial district, Delta state, Nigeria comprising
selected 40 healthcare facilities used as vaccination centers J (33 Primary Healthcare Centres and 7 Hospitals)
and 8 distribution hubs (locations) L, (five Hospitals and three Primary Healthcare Centtrs) Table 1.

Tablel. Health Care Facilities for COVID -19 immunization services and Vaccine Distribution Hubs across Delta
Central Senatorial District in Delta State, Nigeria.

SN Local government area HFC Vaccination Center and Distribution Hub
ETHIOPE EAST

1 Isiokolo PHC Both

2. Eku PHC Vaccination Center

3. Owu PHC Vaccination Center

4. Abraka PHC Vaccination Center

ETHIOPE WEST

1. DELSUTH Both

2. Jesse PHC Vaccination Center

3. Mossogar PHC Vaccination Center

4. Evade Ovadje PHC Vaccination Center

5. Ogharaeki PHC Vaccination Center

6. Ogharaefe PHC Vaccination Center

SAPELE
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1. Central Hospital Sapele Both

2. Gana PHC Vaccination Center

3. Amukpe PHC Vaccination Center

4. Etamu PHC Vaccination Center

5. Urban PHC Vaccination Center
OKPE

1. Orerokpe PHC Both

2. Adeje PHC Vaccination Center

3. Ughotor PHC Vaccination Center
4. Egborode PHC Vaccination Center
5. Okwokoko PHC Vaccination Center
ubDU

1. Ekete PHC Vaccination Center

2. Emadadja PHC Vaccination Center

3. Orhuwhorun PHC Vaccination Center

4. General Hospital, Udu Both

5. Ovwian PHC Vaccination Center

6. Opete PHC Vaccination Center
UGHELLI NORTH

1. Ekiugbo PHC Vaccination Center

2. Central Hospital Ughelli Both

3. Government Hospital, Orogun, Vaccination Center

4. Agbarho Government Hospital Vaccination Center

5. Uwheru PHC Vaccination Center
UGHELLI SOUTH

1. Otu Jeremi PHC Vaccination Center

2. Okpare PHC Vaccination Center

3. Ewu PHC Vaccination Center
4. Usiefurun PHC Vaccination Center
UVWIE

1. Ugbomro PHC Vaccination Center
2. Ogboroke PHC Vaccination Center
3. Ekpan General Hospital Both

4. Ogborikoko PHC Vaccination Center
5. Enerhen-1 PHC Vaccination Center

(Source: Asaba, Delta State Primary Health Care Development Agency)
3.2 Mathematical Model Formulation
3.2.1 Sets and indices

. l€e L index for location of demand vaccination centers)

. Jj € Jindex for supply sources distribution hubs)

3.2.2 Demand and Service Parameters

. A;Demand arrival rate at location I, assumed to follow a Poisson process.
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. u service rate at a vaccination point at the center.

. s: number of identification vaccination points at a center

. p= A/(sp) : Utilization factor of the queuing system; stability requires p<1.

. T: Maximum response time threshold (6 hours for thawed vaccine). Demand fulfilled after T is late.

3.2.3 Inventory policy and stock variables

. S; : Base stock level at demand location | under continuous reviewsS; — 1 policy.

. N;Number of outstanding orders or backorders at demand location |, respectively

. IK; InventoryS; — N; at demand location .

. IExpected average inventory holding level at the demand location .

. IpExpected average pipeline inventory between supplier j and location .

3.2.3 Service level and performance metrics

. SL?Instantaneous service level at location | fraction of demand fulfilled immediately from local stock.

. SLTTime -based service level at location | —friction of demand fulfilled within the maximum time

threshold T.

. w, Fraction of demand at location | fulfilled from pipeline stock within time T.

. oy j:Fraction of demand at local | fulfilled by lateral transshipment from location j.

. 0, Fraction of demand at location I not fulfilled within threshold T. So SLT=1- 8.

3.2.4 Cost parameters

. Cy;Unit cost of lateral transshipment from location j to I.

. c;Unit inventory holding cost at location 1.

. cpiUnit pipeline stock cost for location I.

. F;Fixed cost of the operating facility at location I.

3.2.5 Decision variables

. Y, eBinary{0,1} variable indicating whether a facility at demand location | is open if closed,Y; = 1 if
Y, =0

. X,; €Binary{0,1} variable whether demand location | is assigned to supply source or distribution hub j, if

assigned X;; = 1otherwise X;; = 0.

3.2.6 Queuing and Inventory Model Parameters

. &;Demand process at location |.

v;:Replenishment process at location |.

pnSteady state probability of having n orders in the system at location | at location |.

. K;Lead time or replenishment time.

. p°Normalizing constant or empty system probability.

3.2.7 Lagrangian Relation Parameters

. Ay, K,, K5, £, Lagrangian multiplier for complicating constraints.

LcLagrangian function.
g«Dual function.

. a k Step size at iteration k in the subgradient algorithm
3.2.8 Other parameters and constants
. B: capacity of demand location I.
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. M: Number of node locations.

. d;;Distance between demand location | and distribution hub j.

. SmaxtMaximum permitted stock level at the demand location |.

. y;Maximum required service level for SL%andSL!.

3.3.1 Queuing Model (Vaccination Center as an M/M/s Queue):

. Arrivals: Patient arrivals follow a Poisson process with mean rate A.

. Service: The center has identical vaccination stations. The service time per patient is exponential with

mean rate 1. The service rate W is a decision variable representing resource intensity.

. Stability: The system is stable if p=21/ (sp)<l.

3.3.2 Model Assumptions:

. Demand: The demand for medical supplies e. g., orders from clinics at each location | follows a rate-
based Poisson process. A;

Service: Each location operates under a continuous-review (S;—1,S;) inventory policy.

. Time-sensitivity: A maximum response time threshold T is defined e. g., 6 hours for a thawed vaccine.
Demand fulfilled after T incurs a high penalty, representing the cost of a spoiled dose or a critical treatment delay.
. Flexibility: Lateral transshipments between locations are permitted if the transfer can be completed within
T

3.4.1 Queuing-Based Inventory Analysis:

Following the methodology in the provided paper, the inventory behavior at each location is modeled as an M
(n)/D/oo queue. The steady state probabilities of this queue are used to derive the expressions for

SL?, ®, and a;;, which are then embedded within the optimization model.

3.4.2 Key performance metrics (service levels)

The model tracks two critical service levels for each location I

1. Instantaneous Service Level (SL9): The SL? fraction of demand fulfilled immediately from the local stock.
2. Time Based Service Level (SLT): The SL] fraction of demand fulfilled within the maximum time
threshold T. This is the primary metric for time sensitive supplies and is calculated as follows:

SLT = SLY+ o, + Zalj
Jj€l

Where, (0,,is the fraction fulfilled from the pipeline within T, and «,;is the fraction fulfilled via lateral
transshipment from location j.
3.4.3 Computation of Performance Metrics
Through the queueing analysis, we compute the key performance metrics needed for the optimization. Namely,
using the steady-state probabilities of the M(n)/D/oo queue Yang et al.[2013, Section5] hence for an inventory
base stock S; — 1, S; control policy, the inventory at demand location | satisfies. IK; = S; — N; Modeling the
inventory level distribution at each location | for any j:< S,
P(IK; = j) = Py(S; — J, £;K;), the formula for the poison probability mass function:

k
Py(k;, @) = Z po(i, B) provides the likelihood of obtaining that value k, given the underly
i=0
The Poisson rate represented by the demand arrival rate.£; Therefore, by applying the PASTA property, the
fraction of the demand immediately satisfied from on hand stock can be determined as follows:
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0 1
p = S
St (SLKz)n_l_(ﬁ)l w (k)"
n=0 np! y! n=5;  n!
Furthermore,
S1—1 (s, K)
L = P(N,<8)) = p®™* " pO (mi8iKp) = p*"'Py(S, — 1, 8,Kp) = poe™™ Z L e-bit
n=0 =0

The fraction of L’s demand fulfilled by the pipeline within time T is given as follows:

OeVlKl 81\ 1po
w, = P(0<W, < T) = () 1P = Lyi(Ki =) = Pogs, = LyiK) 1=

06?1, (51) Z(Yz D" -Yﬂﬁ‘ l Z(VI(KZ T)) e~ V1(Ki=T)

The fraction of location L’s demand fulfilled by j can be estimated as follows:

alj:(l—SL?—ml)(l—SL?j)...(1—SL?j_1)SL?j
The instantaneous service level achieved for location L, specifically considering the total demand filled from the
local inventory stock, is obtained as follows:

SLO = Z SLY
l Zzej 4

leJ
The fraction of demand satisfied within a maximum response time threshed T is given by the following:

SL'{ = SL(l) + w,; +z (le
Jj€l
The total demand of location L satisfied within a maximum response time threshold T can be estimated as follows:

SLT
Z : Zle] &

l€]
The expected average inventory level held at location L in the long run is as follows:
Si—1
Iy = E[(S, ~ ND*1 = ) (S = n)p,

n=0

Wherep,,, the steady-state probabilities are derived as

r (SlKl) ifn <Sl

e
(kl}'l)n

P° (&) iz,

The long run expected average inventory held in the pipeline between supply j and location L is then estimated
as follows:

o)

Z nP,

n=0
Finally, the long run expected average demand at location L fulfilled by lateral transshipment from depot
distribution hub j is derived as follows:
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Lar= o4

]
These metrics were iteratively estimated following Yang et al. (2013,) to enable the evaluation of the objective
function and constraints for any candidate solution to the optimization model. Note that for location L:

SL?+<»1+ZOLWJ.+01 =1
j€]

Furthermore, SLT=1-6,
3.5 Integrated Optimization Model
With the problem context and formulation defined. We present a mathematical model for a multi echelon queuing
theoretic approach to time sensitive service level optimization for medical supply chain distribution during
pandemic outbreaks with the objective of guaranteeing a high probability of meeting strict, time sensitive delivery
windows during a pandemic subject to service level constraints.
Obijective Function:

minz Z cyLarXy + (el + culy) Yy + £, 1)
leL \ j€]
This includes Lateral Transshipment Cost InventoryLr Holding Cost Pipelinel,; Stock Cost andl,, Fixed Facility
Costs.f;
3.5.1 Model constraints
Subject to
. Service Level Constraints or Time Sensitivity Constraints: Ensuring that minimum service standards are

met within the time of the trench hold. They mathematically define the time sensitive goal by mandating that a
minimum fraction of demand must be fulfilled within the critical time window T.

SL? > @Y, VI eL (2)
SL™> 1Y, Vi eL 3)
. Single-source constraint: Each demand point is assigned to one supply source.

z X, =1 Viel )

j€]
. Capacity constraint: The total demand assigned to a demand location | (if it is open) should not exceed its
capacity.

ZXU < BY, Vie] (5)

j€l

o Lead Time Distance constraint: This constraint ensures that the average distance and thus, transportation

time between echelons is bounded by the replenishment lead time.N; During a pandemic, a vaccine shipment
cannot travel an unrealistic distance that would cause spoilage. This constraint rules out inefficient and dangerous
solutions.

U< K, V leLjel ©6)

pg. 38



International Journal of Allied Sciences (IJAS) Vol. 16 (10)

. Maximum stock level or real-world resource bound constraint: This constraint limits the number of
vaccines that can be distributed at a distribution hub. The cost or quantity of the base stock level atS,
location | must not exceed a maximum allowable values S, but only if the location is open.

ClSl < SmaXlYl VIl eL (7)
. Emergency Sharing Limit or Lateral transshipment proportion Constraint: This condition states that the
total help a vaccination center receives from others Lateral transshipment cannot exceed 100% of its needs.
Dayst VielL 8)
Jj€l
. Logical linkage constraint: This constraint links the assignment variable toX;; the facility opening

decision variable.Y; It states that vaccines can only be assigned to a vaccination center if the center is open. If L
is closed, the vaccine cannot assign Y;=0.

ZX”SYl VieL ©)

Jj€l
. The binary nature of location constraint: This specifies that if the variable Y,which indicates whether a
facility is opened at location I, must be either O closed or 1 open.
Y; €{0,}, for each VIEL (10)
J Assignment Decision Constraint’s Binary Nature: This constraint specifies that the assignment
variable X;;which indicates whether demand location I is assigned to depot j, must be binary 0 or 1.
Xj; € {0,1}, for each VIieLje] (12)

4.0 Case Study: The COVID-19 Vaccine Distribution Problem

4.1 Distribution of Covid-19 Vaccines in Delta State, Nigeria

We frame our model around a multi-echelon, large-scale vaccination hub during the initial mass inoculation phase
of the Johnson and Johnson Covid-19 vaccine distribution of 87,038 doses of Moderna for the first dose
vaccination and 16,080 doses of Oxford Astrazenica for the second dose vaccination across the three senatorial
districts in Delta state, Nigeria Table 2.

Table 2. Distribution of the first and second doses of Covid-19 Vaccines across Delta State Senatorial Districts

Senatorial District Moderna Doses Oxford AstraZenica Doses
Delta North 30,012 5,428
Delta Central 29,009 6,012
Delta South 28,017 4,640

(Source: Asaba, Delta State Primary Health Care Development Agency)

4.1.2 Distribution of COVID-19 Vaccines in the Delta Central Senatorial District

This study focused on the distribution of the Johnson and Johnson vaccines in the Delta central senatorial district
for the first ( Moderna) and second (Oxford Astrazenica) doses across the 40 selected healthcare facilities (HCFs)
which comprised (32 Primary Healthcare Centres) and ( 8 Hospitals) which served as both primary and secondary
healthcare facilities . Table3.

Table3. Distribution of the Johnson and Johnson COVID-19 Vaccines for 1% and 2" doses in the Delta Central
Senatorial District of Delta State, Nigeria
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S/N PHC Local Govt. Area  Moderna (Doses) Oxford Astrazenica (Doses)
1. Isiokolo PHC ETHIOPE EAST 821 149
2. Eku PHC 796 125
3. Ovu PHC 781 117
4. Abraka PHC 1012 131
5. DESULTH  ETHIOPE WEST 852 208
6. Jesse PHC 563 112
7. Mosogar 688 115
8. Ovadje PHC 634 102
9. Oghareki PHC 672 125
10.  Ogharefe PHC 659 131
11.  GanaPHC SAPELE 692 136
12.  Amukpe PHC 782 153
13.  Central Hospital Sapele 897 222
14, Etamu PHC 633 126
15. Urban PHC 657 132
16. Orerokpe PHC OKPE 875 207
17.  Adeje PHC 671 101
18. Egborode PHC 563 121
19. Ughotor PHC 651 127
20.  Okwokoko PHC 801 133
21. Ekete PHC ubuU 654 163
22, Emadadja PHC 532 109
23. Orhuwhorun PHC 637 148
24.  General Hospital, Udu 578 142
25.  Ovwian PHC 655 166
26.  Opete PHC 516 115
217. Ekiugbo PHC UGHELLI NORTH 784 208
28. Central Hospital Ughelli 998 233
29. Government Hospital, Orogun, 785 181
30.  Agbarho Government Hospital 887 217
31. Uwheru PHC 661 139
32.  Oto Jeremi PHC UGHELLI SOUTH 876 176
33.  Okpare PHC 532 118
34. Ewu PHC 478 101
35. Usiefurun PHC 858 127
36. Ugbomro PHC UVWIE 627 159
37.  Ogboroke PHC 763 171
38. Ekpan General Hospital 1071 229
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39. Ogborikoko PHC 702 164
40. Enerhen-1 PHC 715 173
(Source: Asaba, Delta State Primary Health Care Development Agency)

3.1 Characteristics of the Problem

Time Sensitivity: The Johnson and Johnson vaccine, for instance, had to be used within 6 hours once thawed and
diluted. This creates a strict maximum allowable time (T,,,x) between the preparation of a vaccine dose and its
administration.

Stochastic Demand: Appointments, walk in, and group arrivals lead to highly variable and unpredictable
individual arrival patterns, best modeled as a Poisson process with rate A patients hour.

Controllable Service: The service process registration, screening, injection, and observation can be accelerated
by adding more staff vaccinators, administrators and stations, increasing the service rate p patients /server).

4.0 Solution and numerical simulation methods

4.1 Solution Method

After establishing the problem context and motivations, this section outlines the proposed solution methodology.
Given the integrated, multi echelon nature of the problem with strategic decisions around facilities, inventories,
and their alignment, a queueing inspired optimization approach is well suited. Specifically, a mixed integer linear
program (MILP) formulation is developed to optimize service network configuration and dynamic inventory
allocation policies. This approach represents facilities as nodes in a network with decision variables determining
optimal location sizes and capacities. Manufacturer plants and final customers markets are designated as special
nodes to model the supply and demand boundaries. A Lagrangian relaxation scheme is applied to decompose the
large MILP into tractable sub problems for solution efficiency. The network structure is exploited to derive
optimality conditions that enable iterative policies to reach coordination. Computational experiments across
demand scenarios were conducted to assess balancing costs and fill rates under various flexibility settings. To
apply Lagrangian relaxation, we identify the following complicating constraints: (2, 3, 4, and 9) that couple the
facility location ()) and assignment (X) decisions. We introduce non-negative Lagrangian multipliers o,V k =
1, 2,3,4corresponding to these constraints. Where

leL \ j€g]

The partial Lagrangian function is form by moving the complicating terms to the objective function with their
multipliers as follows:

LA:nlj+A1 szl]_l +Azz ZXU_YI +ASZ((P1Y1_SLO)

1€l jeJ leL \ jeJ leL
+ Ay Z(TlYI - SLT) (13 )
leL
Subject to
Z Xy < BY, Vie] (14)
i€l
Zaljg VieL (15)
Jj€]
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% < K, vVl e Ljel (16)
;S < SmaxYiV1 € L 17)
Y; €{0,}, for each VIeL (18)
Xj; € {0,1}, for each VIeLje€)) (19)

Taking the derivative of L,with respect to each primal variable and Y;X,;SL°SL" setting it to zero, we derive the
optimality conditions, we obtained aza,= 0), so that

9) = Lusas =M+ [ D7) Xy =142, ) { D (X, - %) (20)

leL jeJ leL \ je]
This quantity g(a)represents the minimum value achieved by L, hence the partial Lagrangian dual function. It
forms the basis for the iterative sub gradient method to obtain the optimal primal solution.
4.1.1 Sub-gradient Optimization
Having derived the dual function g(a;)to develop the iterative algorithm for maximizing g and solving the dual
problem, we apply a sub gradient optimization method. Where the partial derivatives of g with respect to the
Lagrange multipliers A;and a, is obtained, these partial derivatives represent sub gradients of g because g is non
smooth due to the inequality constraints involved in the formulation of the primal problem. Specifically, the dual
problem is as follows:

max g(a) (21)
Subject to
°g _
°9 _ X;=1 (22)
94, :

IeL 9
°g
o= 2| 2 xu- @23
gtz jel

Here, the gradients are:

S1 = VAngZX”- -1 (24)

leL jeJ

s2= Va9 =) | ) Xy —¥, (25)
leL \ jg]

To solve this via the sub-gradient method, we initialize the multiplier vector as follows:
2(0)=0 (26)
A,(0) =0 (27)
The sub-gradient algorithm then iteratively updates the multipliers at iteration k as follows:
A (K+ 1) = a(K) +a(K) .s; (k) (28)
A (k+ 1) = ay(k) +a(k) .s, (k) (29)

Where a(k) = \/LK Vk £ 0 k is the step size, where c is a constant (Polyak, 1987).

This satisfies the conditions of being positive, summation to infinity, and square summable. Repeat until
convergence of a;.

4.1.2 Algorithm for the Subgradient Method for Solving the Dual Problem
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- Initialize: k < 0, chose a(K) step size rule a,(0), A,(0)

: while not convergence do

: Compute the subgradients: s; (k) < Va g = X jX;j — 1s,(k) < Vag =X jX;; — Y,

: The gradient ascent step: A; (k + 1) a; (k) + a(k)s; (k) ay(k+ 1) a,(k) +a(k)s, (k)

s ke k+1

cifmax( Is;(k) I, 1s,(k) 1) <€ then

: break

end if

: Update step size: compute new a(k)

10: end while

11: Primal variables are recovered: find x*, y* from aj, a5

12:

13: Return Aj, a3, x*, y*

4.2 Numerical Simulation Results

The numerical simulation results for the performance metrics in the distribution of Moderna for 1 dose and
Oxford Astrazenica for 2" dose of COVID-19 vaccine across the vaccination centers in Delta central senatorial
district 8 (eigh)t local government area in Delta state, Nigeria, are shown in Table 4, with performance metrics
for demand locations shown in Figure 1. To conduct computationally intensive modeling and optimization, the
University s high-performance computing HPC cluster was used. Each compute node contained:

* Intel Core 15-9700K 3.60 GHz processor

* 32GB DDR4 2666 RAM

« 1 TB solid-state drive for data storage

The cluster comprised 40 identical nodes interconnected through an InfiniBand EDR 100 Gbps fabric. Workloads
were scheduled on the Slurm resource manager using a message passing interface (MPI) for parallelization.
Simulations were implemented in Python 3.8 using NumPy, Pandas, and Matplotlib. The Pyomo optimization
modeling language, along with CBC and SCIP mixed integer programming solvers, was employed to formulate
problems and obtain optimal solutions. This HPC configuration was essential for systematically exploring large
solution spaces across many random problem instances within reasonable time frames. Parallelization facilitates
solving industry scale cases with hundreds of nodes to achieve scalability of the benchmark algorithm.

Table4. Numerical Simulation Results for the Distribution of the Moderna (1t dose and Oxford Astrazenica (2"
dose of COVID-19 Vaccine

O 00 N O OB W DN B

S/N SL? SLT W, Z a;
1 0.71 0.90 0.40 0.20
2 0.90 0.94 0.02 0.21
3 0.81 0.95 0.04 0.88
4 0.78 0.81 0.04 0.51
5 0.81 0.84 0.08 0.22
6 0.79 0.97 0.03 0.61
7 0.82 0.95 0.07 0.59
8 0.83 0.87 0.05 0.71
9 0.83 0.87 0.06 0.24
10 0.74 0.82 0.02 0.87
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Figure 1. SLO, SLT, w; and Z a;; for the demand location
5. Discussion of COVID-19 Vaccine Distribution Numerical Results
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The formulated model was applied in the distribution of the Johnson and Johnson Moderna for 1% doss and
Oxford Astrazenica for 2" dose across the vaccination centers in Delta central senatorial district (eight local
government areas in Delta state, Nigeria, as shown in Table 4 with the performance metrics results shown in
Figure. The numerical simulation results in Table 4 will be analyzed and discussed based on the performance
matrices in Figure 1 as follows:

. Time Based Service Level (SL] )Performance

The results shows that (SL]) values across the 40 locations are consistently high, with most exceeding 0.85 and
many reaching 0.95 or higher. This indicates that the optimized network is highly effective in meeting the time
sensitive vaccine demand. The model successfully ensures that most demand is fulfilled within the critical time
window e. g., 6 hours for thawed vaccines which is a core objective of the research.

) Instantaneous Service Level (SL?)Performance

The (SL?) values are more varied, ranging from ~0.71 to 0.98, with several locations falling below 0.8. Lower
SLIvalues suggest that local stock alone is insufficient to meet all immediate demand. However, this is
compensated for by the use of pipeline stock and lateral transshipments, which together boost the overall.SLT
This reflects a cost effective strategy in which local inventory is balanced with redistribution mechanisms.

. Role of Pipeline Stockw;

The values w; are generally low to moderate (mostly between 0.01 and 0.08), indicating that pipeline
replenishment from central depots contributes modestly to meeting time-sensitive demand. This suggest that
pipeline stock is a component of the strategy, it is not the primary mechanism for achieving high service levels.
This may be due to the longer lead times or capacity constraints at the central depots.

. The Role of Lateral Transshipments}, a;;

The lateral transshipment contributions are significant and highly variable, ranging from 0.16 to 0.89. This
highlights the critical role of lateral transshipments in mitigating local shortages. Facilities with low SLYoften
have high ¥ a;;showing that the model effectively redirects surplus stock from neighboring hubs to meet urgent
demand. This aligns with the research objective of leveraging supply chain flexibility to enhance responsiveness.
The weighted average of SLTacross all locations is consistently high, demonstrating that the system as a whole
meets the time sensitive service level target. The model successfully integrates location, inventory, and
transshipment decisions to achieve a resilient and responsive supply chain. The use of a queuing based inventory
policy allows for dynamic adjustment to stochastic demand, which is essential during a pandemic.

6. Conclusion

The proposed multi-echelon queuing-theoretic model is validated by numerical simulation as a highly effective
tool for designing resilient and responsive medical supply chains during pandemics. The model ensures that time-
sensitive medical supplies (like vaccines) are delivered within critical time windows by dynamically balancing
local inventory with lateral and pipeline flexibilities, thereby minimizing waste and maximizing public health
impact.

7. Recommendation for the Feature Research Directions

The study recommends extending and enhancing the proposed model in several key areas as follows:

1. Model Generalization and Real-World Complexity: Incorporate more real-world factors, such as transportation
reliability, road conditions, and climate impacts, into the cold chain.

2. Supply Chain Scope Flexibility: Expand from a single product vaccine to a multi- product supply chaine. g.,
vaccines, PPE, therapeutics and conduct a deeper cost benefit analysis of different flexibility mechanisms (e.g.,

lateral transshipment, higher base stock).
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3. Integration of Human and Behavioral Factors: Human resource constraints (staffing and training) and

workforce scheduling and behavioral factors, such as vaccine hesitancy and community acceptance, are included

as endogenous variables affecting demand.

4. Advanced Methodological Approaches: Game theory is applied to model interactions between multiple

stakeholders, e.g., governments and private suppliers, and multi-stage stochastic programming is also formulated

to handle sequential decision making under uncertainty.

5. The findings of this study provide actionable policy insights for improving the resilience and responsiveness

of medical supply chains during public health emergencies to significantly enhance the reliability of vaccine

distribution systems.
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