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 During a pandemic, the distribution of time-sensitive medical supplies, 

such as vaccines, poses a critical public health challenge characterized 

by stochastic demand and stringent response time constraints. This 

study presents a novel multi echelon queuing theoretic model for the 

integrated optimization of facility location, inventory allocation, and 

distribution logistics. We model the supply network as a system of 

interconnected facilities where demand follows a Poisson process and 

incorporate two key flexibilities: lateral trans-shipments between 

distribution centers and pipeline stock management from central 

depots. The objective is to minimize total system costs including fixed 

facility, inventory holding, pipeline, and lateral transportation costs 

while ensuring that a target demand fraction is fulfilled within a 

maximum allowable response time. The problem is formulated as a 

Mixed Integer Linear Program MILP and solved using a Lagrangian 

relaxation scheme coupled with a sub gradient optimization algorithm. 

Numerical simulations, based on a case study of 40 demand locations 

in Delta State, Nigeria, demonstrate the model’s efficacy. The results 

show that the optimized network consistently achieves high Time 

Based service levels SL𝑙
T> 0.7 for all locations, with many exceeding 0.  

95 by effectively balancing inventory across echelons and leveraging 

lateral trans-shipments to mitigate local shortages. This approach 

provides a quantifiable decision support tool for designing resilient, 

responsive, and cost effective medical supply chains for future public 

health emergencies. 
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1ntroduction 

The COVID-19 pandemic has revealed the vulnerabilities of global medical supply chains. The surge in demand 

for critical, often perishable, items, such as vaccines and personal protective equipment (PPE), exposed profound 

inefficiencies in traditional distribution models, leading to critical shortages in some areas and oversupply in 

others. A key lesson is the need for an integrated approach that simultaneously optimizes the strategic placement 

of facilities location the quantity of supplies held at each inventory point and the dynamic routing of goods 

transshipment under highly uncertain, time sensitive conditions. 

The development of COVID-19 vaccines was a monumental scientific achievement. However, its public health 

impact was contingent on an equally complex logistical challenge: the rapid, global distribution of a perishable 

commodity under intense demand uncertainty. For instance, an mRNA vaccines have strict and short thermal 

stability outside cold storage, creating a use it or lose its reality. Bottlenecks plagued the initial phases of the 

rollout, leading to the risk of vaccine spoilage and critical treatment delays. Traditional SC models, which often 

focus on deterministic flows and treat location and inventory problems separately, are ill equipped to handle this 

stochastic, time sensitive environment. 

This study addresses this gap by developing a comprehensive multi echelon queuing theoretic framework that 

integrates these decisions. Our model is specifically designed for the distribution of time sensitive medical 

supplies, where exceeding a maximum response time T can render a vaccine ineffective or lead to a life 

threatening shortage. Building on the foundational work of Yang et al. 2013    we model each distribution center 

as an M (n)/D/∞ queuing system. This allows us to accurately capture the stochastic nature of demand arrival and 

service times. The key innovations of the model are the incorporation of lateral transshipments, which allows 

stock to be shared between peer facilities to quickly address local surges and the explicit management of pipeline 

stocks from central suppliers. 

The primary research question is: How can a multi echelon medical supply network be designed to minimize total 

cost while guaranteeing a high probability of meeting strict, time sensitive delivery windows during a pandemic? 

2. Literature Review 

The coronavirus disease 2019 (COVID-19) pandemic served as a stark stress test for global medical supply 

chains, exposing critical vulnerabilities in the logistics of distributing time sensitive medical supplies. A 

significant body of research has documented the widespread disruptions. For instance, Moosavi et al. (2022) [3] 

analyzed potential disruption management strategies, highlighting the need for resilience in the face of such 

shocks. The literature specific to COVID- 19 vaccine distribution consistently highlights several interconnected 

challenges: stringent and unbroken cold chain requirements Lee et al., 2021), profound demand 

uncertainty during rollout phases, and the logistical nightmare of last -mile distribution to vaccination centers. 

Studies in low resource settings further emphasize systemic weaknesses. In their assessment of Delta State, 

Nigeria, Taigbenu et al. (2025) [2] explicitly detailed how cold chain limitations, workforce shortages, and 

community hesitancy led to a decline in immunization coverage, demonstrating how pre-existing system frailties 

are exacerbated during a pandemic. Similarly, Haidari et al. [2016] used simulation to show that optimizing the 

location of storage facilities could dramatically improve vaccine availability in low and middle income countries. 

Although these studies excellently describe the problems and some strategic level solutions, a recognized gap 

exists in quantitative, prescriptive models that can dynamically optimize inventory and transshipment decisions 

across a multi -tiered network under the real world constraint of a strict, time sensitive usable window for 

prepared vaccines. 

However, the application of queuing theory has largely been confined to the service delivery point within a 

healthcare facility. Research that extends queuing models upstream into the supply chain and inventory 
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management processes that feed these service points is scarce. Berman and Larson (2001) introduced spatial 

queuing for emergency vehicle deployment, but its application to medical supply chains is limited. The use of 

queuing theory to model a network of distribution centers and vaccination hubs as an integrated system of 

interconnected queues, where the "service" is the fulfillment of a vaccine order, remains underexplored. Recent 

studies, such as Arora et al. (2021), have begun applying queuing models to vaccination centers for capacity 

planning, but they stopped at the clinic door. This paper bridges that gap by modeling the entire supply network 

using multi echelon queuing systems like M(n)/D/∞  as inspired by Yang et al. [2013], to capture the stochastic 

nature of demand and replenishment lead times across all levels, not just the final service point. 

This research builds directly upon the literature on integrated inventory-transshipment. The work of Yang et al. 

[2013] on Service Parts Inventory Control with Lateral Transshipment and Pipeline Stock Flexibility is 

particularly relevant because it provides a queuing based analysis for a similar base stock (S- 1, S) record point 

inventory control policy system.  

This study aims to address four critical gaps in the existing literature on supply chain management and health 

care logistics. First, it confronts the lack of integrated, quantitative optimization models for pandemic vaccine 

distribution that can dynamically handle the pervasive stochastic demand and supply. Second, it extends the 

traditional application of queuing theory within clinical settings by extending it to model the entire upstream 

medical supply network as a multi echelon queuing system. Third, it introduces explicit, hard time based service 

level constraints intoSLL
T the supply chain model, a feature that is critical for managing perishable commodities 

like vaccines but often absent from existing integrated models. Finally, it specifically investigates the 

underutilized potential of lateral transshipment as a dynamic strategy for mitigating shortages of highly perishable 

medical supplies during a pandemic outbreak. 

3.0 Problem formulation and mathematical model 

3.1 Problem formulation 

We consider a multi echelon supply network in Delta central senatorial district, Delta state, Nigeria comprising 

selected 40 healthcare facilities used as vaccination centers J (33 Primary Healthcare Centres and 7 Hospitals) 

and 8 distribution hubs (locations) L, (five Hospitals and three Primary Healthcare Centtrs) Table 1. 

Table1. Health Care Facilities for COVID -19 immunization services and Vaccine Distribution Hubs across Delta 

Central Senatorial District in Delta State, Nigeria. 

S N Local government area HFC  Vaccination Center and Distribution Hub 

ETHIOPE EAST 

1    Isiokolo                                      PHC  Both 

2.   Eku                                             PHC                  Vaccination Center  

3.   Ovu                                            PHC             Vaccination Center 

4.   Abraka                                        PHC                   Vaccination Center 

ETHIOPE WEST 

1.   DELSUTH                  Both 

2.   Jesse                                            PHC               Vaccination Center 

3.   Mossogar                                     PHC    Vaccination Center 

4.   Evade Ovadje                               PHC               Vaccination Center 

5.   Ogharaeki                                      PHC    Vaccination Center 

6.   Ogharaefe               PHC                    Vaccination Center 

SAPELE 
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1. Central Hospital Sapele                                        Both 

2. Gana                                               PHC                Vaccination Center 

3. Amukpe                                          PHC                 Vaccination Center 

4. Etamu                                             PHC                 Vaccination Center 

5. Urban    PHC                     Vaccination Center 

OKPE  

1. Orerokpe                                        PHC         Both 

2. Adeje                                              PHC         Vaccination Center 

3. Ughotor               PHC                        Vaccination Center 

4. Egborode               PHC                         Vaccination Center 

5. Okwokoko               PHC                          Vaccination Center 

UDU           

1. Ekete                                             PHC                  Vaccination Center 

2. Emadadja                                      PHC        Vaccination Center 

3. Orhuwhorun                                  PHC        Vaccination Center 

4. General Hospital, Udu                                 Both 

5. Ovwian                                          PHC                   Vaccination Center 

6. Opete                                             PHC                   Vaccination Center 

UGHELLI NORTH 

1. Ekiugbo                                         PHC               Vaccination Center 

2. Central Hospital Ughelli                                           Both 

3. Government Hospital, Orogun,                                 Vaccination Center 

4. Agbarho Government Hospital                                  Vaccination Center 

5. Uwheru                                         PHC                  Vaccination Center 

UGHELLI SOUTH 

1. Otu Jeremi                                   PHC          Vaccination Center 

2. Okpare                                         PHC          Vaccination Center 

3. Ewu                        PHC          Vaccination Center 

4. Usiefurun                                     PHC          Vaccination Center  

UVWIE            

1. Ugbomro                                     PHC   Vaccination Center 

2. Ogboroke                       PHC                                 Vaccination Center 

3. Ekpan General Hospital                                        Both 

4. Ogborikoko                                  PHC    Vaccination Center 

5. Enerhen-1                                    PHC    Vaccination Center 

      (Source: Asaba, Delta State Primary Health Care Development Agency) 

3.2 Mathematical Model Formulation 

3.2.1 Sets and indices 

 l∈ 𝐿 index for location of demand vaccination centers)  

 𝑗 ∈ Jindex for supply sources distribution hubs) 

3.2.2 Demand and Service Parameters 

 ʎ𝑙Demand arrival rate at location l, assumed to follow a Poisson process. 
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 μ service rate at a vaccination point at the center. 

 s: number of identification vaccination points at a center 

 ƿ= ʎ/(sμ) : Utilization factor of the queuing system; stability requires ρ<1. 

 T: Maximum response time threshold (6 hours for thawed vaccine). Demand fulfilled after T is late. 

 

3.2.3 Inventory policy and stock variables 

 S𝑙 : Base stock level at demand location l under continuous reviewS𝑙 − 1 policy. 

 N𝑙Number of outstanding orders or backorders at demand location l, respectively 

 IK𝑙 InventoryS𝑙 −N𝑙 at demand location l. 

 IHExpected average inventory holding level at the demand location l. 

 IPExpected average pipeline inventory between supplier j and location l. 

3.2.3 Service level and performance metrics 

 SL𝑙
0Instantaneous service level at location l fraction of demand fulfilled immediately from local stock. 

 SL𝑙
TTime -based service level at location l —friction of demand fulfilled within the maximum time 

threshold T. 

  ω𝑙Fraction of demand at location l fulfilled from pipeline stock within time T. 

 α𝑙𝑗:Fraction of demand at local l fulfilled by lateral transshipment from location j. 

 θ𝑙Fraction of demand at location l not fulfilled within threshold T. So SL𝑙
T= 1- θ𝑙. 

3.2.4 Cost parameters 

 C𝑙𝑗Unit cost of lateral transshipment from location j to l. 

 c𝑙Unit inventory holding cost at location l. 

 cƿlUnit pipeline stock cost for location l. 

 F𝑙Fixed cost of the operating facility at location l. 

3.2.5 Decision variables 

 Y𝑙 ∈Binary{0,1} variable indicating whether a facility at demand location l is open if closed, Y𝑙 = 1 if 

              Y𝑙 = 0 

 X𝑙𝑗 ∈Binary{0,1} variable whether demand location l is assigned to supply source or distribution hub j, if                                

assigned X𝑙𝑗 = 1otherwise X𝑙𝑗 = 0. 

3.2.6 Queuing and Inventory Model Parameters 

 𝛿𝑙Demand process at location l. 

 γ𝑙:Replenishment process at location l. 

 рnSteady state probability of having n orders in the system at location l at location l. 

 K𝑙Lead time or replenishment time. 

 р0Normalizing constant or empty system probability. 

3.2.7 Lagrangian Relation Parameters 

 ʎ1, ʎ2, ʎ3, ʎ4Lagrangian multiplier for complicating constraints. 

 LʎLagrangian function. 

 𝑔ʎDual function. 

 α  k Step size at iteration k in the subgradient  algorithm 

3.2.8 Other parameters and constants 

 B: capacity of demand location l. 
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 M: Number of node locations. 

 d𝑙𝑗Distance between demand location l and distribution hub j.  

 Smax𝑙Maximum permitted stock level at the demand location l. 

 ψ𝑙Maximum required service level for SL𝑙
0andSL𝑙

T. 

3.3.1 Queuing Model (Vaccination Center as an M/M/s Queue): 

 Arrivals: Patient arrivals follow a Poisson process with mean rate 𝜆. 

 Service: The center has identical vaccination stations. The service time per patient is exponential with 

mean rate µ. The service rate µ is a decision variable representing resource intensity. 

 Stability: The system is stable if    ρ = 𝜆 / (𝚜µ)<1.  

3.3.2 Model Assumptions: 

 Demand: The demand for medical supplies e.  g., orders from clinics at each location l follows a rate-

based Poisson process. λ𝑙 

Service: Each location operates under a continuous-review (S𝑙−1,S𝑙) inventory policy. 

 Time-sensitivity: A maximum response time threshold T is defined e.  g., 6 hours for a thawed vaccine. 

Demand fulfilled after T incurs a high penalty, representing the cost of a spoiled dose or a critical treatment delay. 

 Flexibility: Lateral transshipments between locations are permitted if the transfer can be completed within 

T. 

3.4.1 Queuing-Based Inventory Analysis:  

Following the methodology in the provided paper, the inventory behavior at each location is modeled as an M 

(n)/D/∞ queue. The steady state probabilities of this queue are used to derive the expressions for  

SL𝑙
0,Ꞷ𝑙 and 𝛼𝑙𝑗, which are then embedded within the optimization model. 

3.4.2 Key performance metrics (service levels) 

The model tracks two critical service levels for each location l: 

1. Instantaneous Service Level (SL𝑙
0): The  SL𝑙

0 fraction of demand fulfilled immediately from the local stock. 

2. Time Based Service Level (SL𝑙
T): The SL𝑙

T fraction of demand fulfilled within the maximum time 

threshold T. This is the primary metric for time sensitive supplies and is calculated as follows: 

SL𝑙
T = SL𝑙

0 + Ꞷ𝑙 + ∑𝛼𝑙𝑗
𝑗∈J

 

Where, Ꞷ𝑙 ,is the fraction fulfilled from the pipeline within T, and 𝛼𝑙𝑗is the fraction fulfilled via lateral 

transshipment from location j. 

3.4.3 Computation of Performance Metrics 

Through the queueing analysis, we compute the key performance metrics needed for the optimization. Namely, 

using the steady-state probabilities of the M(n)/D/∞  queue Yang et al.[2013, Section5] hence for an inventory 

base stock S𝑙 − 1, S𝑙 control policy, the inventory at demand location l satisfies. IK𝑙 = S𝑙 − N𝑙 Modeling the 

inventory level distribution at each location l for any j:≤ S𝑙 

P(IK𝑙 = 𝑗) = P0(S𝑙 − 𝑗, ʎ𝑙K𝑙), the formula for the poison probability mass function: 

P0(k𝑙, ꟕ) =∑ƿ0(𝑖, β)

𝑘

𝑖=0

  provides the likelihood of obtaining that value k, given the underly 

The Poisson rate representedꟕ by the demand arrival rate.ʎ𝑙 Therefore, by applying the PASTA property, the 

fraction of the demand immediately satisfied from on hand stock can be determined as follows:  
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ƿ0 =
1

∑
(δ𝑙K𝑙)𝑛

n!
S𝑙
n=0 + (

δ𝑙
𝛾!)

𝑆𝑙
∑

(𝛾𝑙k𝑙)𝑛

n!
∞
n=𝑆𝑙

 

Furthermore, 

SL𝑙
0 = P(N𝑙˂S𝑙) = ƿ0e

δ𝑙K𝑙 ∑ƿ0

Sl−1

n=0

(n𝑖𝛿𝑙K𝑙) = ƿ
0eδ𝑙K𝑙P0(S𝑙 − 1, 𝛿𝑙K𝑙) = ƿ

0eδ𝑙K𝑙 (∑
(δ𝑙K𝑙)

𝑛

𝑛!

S𝑙

𝑛=0

𝑒−δ𝑙K𝑙) 

The fraction of L’s demand fulfilled by the pipeline within time T is given as follows: 

ω𝑙 = P(0˂W𝑙 ≤ T) = ƿ
0e𝛾𝑙K𝑙 (

𝛿𝑙

𝛾𝑙
)
S𝑙
[P0(S𝑙 − 1, 𝛾𝑙(K𝑙 − T)) − P0(S𝑙 − 1, 𝛾𝑙K𝑙) ]= 

ƿ0𝑒
𝛾𝑙K𝑙 (

𝛿𝑙
𝛾𝑙
)
s𝑙

([∑
(𝛾𝑙K𝑙)

𝑛

𝑛!

S𝑙−1

n=0

e−𝛾𝑙K𝑙] − ⌊1 − ∑
(𝛾𝑙(K𝑙 − T))

n

n!

S𝑙−1

𝑛=0

e−𝛾𝑙(K𝑙−𝑇)⌋) 

The fraction of location L’s demand fulfilled by j can be estimated as follows: 

𝛼
𝑙𝑗=(1−SL𝑙

0−ω𝑙)(1−𝑆𝐿𝑙𝑗
0 )…(1−𝑆𝐿𝑙𝑗−1

0 )SL𝑙𝑗
0  

The instantaneous service level achieved for location L, specifically considering the total demand filled from the 

local inventory stock, is obtained as follows: 

SL0 =∑SL𝑙
0

ʎ𝑙
∑ ʎ𝑙𝑙∈J

𝑙∈J

 

The fraction of demand satisfied within a maximum response time threshed T is given by the following: 

𝑆𝐿𝑙
T = SL𝑙

0 +ω𝑙 +∑𝛼𝑙𝑗
𝑗∈J

 

The total demand of location L satisfied within a maximum response time threshold T can be estimated as follows: 

SLT =∑SL𝑙
𝑇

ʎ𝑙
∑ ʎ𝑙𝑙∈J

𝑙∈J

 

The expected average inventory level held at location L in the long run is as follows: 

IH = E[(S𝑙 − N𝑙)
+] = ∑(S𝑙 − 𝑛)ƿ𝑛

S𝑙−1

𝑛=0

 

Whereƿ𝑛, the steady-state probabilities are derived as 

 

{
 
 

 
 ƿ0

(δ𝑙K𝑙)
n

n!
              if n  ˂S𝑙        

ƿ0 (
δ𝑙

𝛾𝑙
)
S𝑙
(k𝑙𝛾𝑙

)
𝑛

𝑛!
if n ≥ S𝑙

 

The long run expected average inventory held in the pipeline between supply j and location L is then estimated 

as follows: 

∑nP𝑛

∞

𝑛=0

 

Finally, the long run expected average demand at location L fulfilled by lateral transshipment from depot 

distribution hub j is derived as follows: 
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LAT= α𝑙𝑗ʎ𝑗 

These metrics were iteratively estimated following Yang et al. (2013,) to enable the evaluation of the objective 

function and constraints for any candidate solution to the optimization model. Note that for location L: 

𝑆𝐿𝑙
0 +ω𝑙 +∑α𝑙𝑗ʎ𝑗 + 𝜃𝑙 = 1

𝑗∈J

 

Furthermore, SL𝑙
T=1-𝜃𝑙 

3.5 Integrated Optimization Model  

With the problem context and formulation defined. We present a mathematical model for a multi echelon queuing 

theoretic approach to time sensitive service level optimization for medical supply chain distribution during 

pandemic outbreaks with the objective of guaranteeing a high probability of meeting strict, time sensitive delivery 

windows during a pandemic subject to service level constraints. 

Objective Function: 

min∑(∑c𝑙𝑗LATX𝑖𝑗 + (c𝑙I𝐻  + c𝑝𝑙I𝑝)

𝑗∈J

Y𝑙 + f𝑙Y𝐿)

𝑙∈L

                                                                       (1) 

This includes Lateral Transshipment Cost InventoryLAT Holding Cost PipelineI𝐻 Stock Cost andI𝑝 Fixed Facility 

Costs.f𝑙 

3.5.1 Model constraints 

Subject to   

 Service Level Constraints or Time Sensitivity Constraints: Ensuring that minimum service standards are 

met within the time of the trench hold. They mathematically define the time sensitive goal by mandating that a 

minimum fraction of demand must be fulfilled within the critical time window T. 

             

SL0 ≥ φ𝑙Y𝑙                                                   Ɐ𝑙 ∈L                                                                 (2)                                                             

 SLT≥ τ𝑙Y𝑙                                                           Ɐ𝑙 ∈L                                                 (3)                 

 Single-source constraint: Each demand point is assigned to one supply source. 

∑X𝑙𝑗
𝑗∈J

= 1                                                             Ɐ 𝑙 ∈ L                                                               (4)      

      

 Capacity constraint: The total demand assigned to a demand location l (if it is open) should not exceed its 

capacity.                         

∑X𝑙𝑗
j∈J

≤ BY𝑗                                                                      Ɐj ∈ J                                                       (5) 

 

 Lead Time Distance constraint: This constraint ensures that the average distance and thus, transportation 

time between echelons is bounded by the replenishment lead time.N𝐿 During a pandemic, a vaccine shipment 

cannot travel an unrealistic distance that would cause spoilage. This constraint rules out inefficient and dangerous 

solutions. 
Σd𝑙𝑗

M
≤ K𝑙                                                                            Ɐ     𝑙 ∈ L, j ∈J                                 (6) 
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 Maximum stock level or real-world resource bound constraint: This constraint limits the number of 

vaccines that can be distributed at a distribution hub. The cost or quantity of the base stock level atS𝑙 

location l must not exceed a maximum allowable values Smaxlbut only if the location is open. 

c𝑙S𝑙 ≤ SmaxlY𝑙                    Ɐ𝑙 ∈ L                                                                                                    (7) 

 Emergency Sharing Limit or Lateral transshipment proportion Constraint: This condition states that the 

total help a vaccination center receives from others Lateral transshipment cannot exceed 100% of its needs. 

∑𝛼𝑙𝑗
𝑗∈J

≤ 1                                                                             Ɐ 𝑙 ∈ L                                                         (8)   

 

 Logical linkage constraint: This constraint links the assignment variable toX𝑖𝑗 the facility opening 

decision variable.Y𝑙 It states that vaccines can only be assigned to a vaccination center if the center is open. If L 

is closed, the vaccine cannot assign Y𝑙=0. 

∑X𝑙j
𝑗∈J

≤ Y𝑙                                                                                                          Ɐ 𝑙 ∈ L                               (9) 

 The binary nature of location constraint: This specifies that if the variable Ylwhich indicates whether a 

facility is opened at location l, must be either 0 closed or 1 open. 

Y𝑙  ∈ {0, }, for each                                                                              Ɐ 𝑙 ∈ L                                         (10) 

 Assignment Decision Constraint’s Binary Nature: This constraint specifies that the assignment 

variable X𝑙jwhich indicates whether demand location l is assigned to depot j, must be binary 0 or 1. 

X𝑙j ∈ {0,1}, for each                                        Ɐ  𝑙 ∈ L 𝑗 ∈ J                                                                   (11)  

4.0 Case Study: The COVID-19 Vaccine Distribution Problem 

4.1 Distribution of Covid-19 Vaccines in Delta State, Nigeria 

We frame our model around a multi-echelon, large-scale vaccination hub during the initial mass inoculation phase 

of the Johnson and Johnson Covid-19 vaccine distribution of 87,038 doses of Moderna for the first dose 

vaccination and 16,080 doses of Oxford Astrazenica for the second dose vaccination across the three senatorial 

districts in Delta state, Nigeria Table 2.  

Table 2. Distribution of the first and second doses of Covid-19 Vaccines across Delta State Senatorial Districts 

Senatorial District  Moderna Doses  Oxford AstraZenica Doses 

Delta North    30,012    5,428 

Delta Central    29,009    6,012 

Delta South    28,017    4,640 

(Source: Asaba, Delta State Primary Health Care Development Agency) 

4.1.2 Distribution of COVID-19 Vaccines in the Delta Central Senatorial District 

This study focused on the distribution of the Johnson and Johnson  vaccines in the Delta central senatorial district 

for the first ( Moderna) and second (Oxford Astrazenica) doses across  the 40 selected healthcare facilities (HCFs) 

which comprised (32 Primary Healthcare Centres) and ( 8 Hospitals) which  served as both primary and secondary 

healthcare facilities . Table3. 

Table3. Distribution of the Johnson and Johnson COVID-19 Vaccines for 1st and 2nd doses in the Delta Central 

Senatorial District of Delta State, Nigeria 
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S /N PHC  Local Govt. Area Moderna (Doses) Oxford Astrazenica (Doses) 

1. Isiokolo PHC  ETHIOPE EAST  821         149   

2. Eku PHC     796    125 

3. Ovu PHC     781    117                                                    

4. Abraka PHC     1012    131   

5. DESULTH  ETHIOPE WEST  852                                           208 

6. Jesse PHC                                                       563    112 

7.  Mosogar     688    115  

8. Ovadje PHC     634         102   

9. Oghareki PHC     672    125  

10. Ogharefe PHC     659    131 

11. Gana PHC  SAPELE  692    136 

12. Amukpe PHC     782    153 

13. Central Hospital Sapele   897    222 

14. Etamu PHC     633    126 

15. Urban PHC     657    132 

16. Orerokpe PHC      OKPE  875    207 

17.       Adeje PHC     671    101 

18. Egborode PHC    563    121 

19. Ughotor PHC     651    127 

20. Okwokoko PHC    801    133 

21.       Ekete PHC                UDU   654    163 

22. Emadadja PHC    532    109 

23. Orhuwhorun PHC    637    148 

24. General Hospital, Udu              578    142 

25. Ovwian PHC     655    166 

26. Opete PHC     516    115 

27. Ekiugbo PHC           UGHELLI NORTH 784    208 

28. Central Hospital Ughelli   998    233 

29.  Government Hospital, Orogun,              785    181 

30. Agbarho Government Hospital  887    217 

31.       Uwheru PHC    661    139 

32. Oto Jeremi PHC UGHELLI SOUTH 876                                           176 

33. Okpare PHC     532    118 

34. Ewu PHC     478    101 

35. Usiefurun PHC    858    127 

36. Ugbomro PHC UVWIE  627    159   

37. Ogboroke PHC    763    171   

38. Ekpan General Hospital   1071    229 
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39. Ogborikoko PHC    702    164 

40. Enerhen-1 PHC    715    173 

(Source: Asaba, Delta State Primary Health Care Development Agency) 

 

3.1 Characteristics of the Problem 

Time Sensitivity: The Johnson and Johnson vaccine, for instance, had to be used within 6 hours once thawed and 

diluted. This creates a strict maximum allowable time (Tmax) between the preparation of a vaccine dose and its 

administration. 

Stochastic Demand: Appointments, walk in, and group arrivals lead to highly variable and unpredictable 

individual arrival patterns, best modeled as a Poisson process with rate 𝜆 patients hour. 

Controllable Service: The service process registration, screening, injection, and observation can be accelerated 

by adding more staff vaccinators, administrators and stations, increasing the service rate µ patients /server). 

4.0 Solution and numerical simulation methods 

4.1 Solution Method 

After establishing the problem context and motivations, this section outlines the proposed solution methodology. 

Given the integrated, multi echelon nature of the problem with strategic decisions around facilities, inventories, 

and their alignment, a queueing inspired optimization approach is well suited. Specifically, a mixed integer linear 

program (MILP) formulation is developed to optimize service network configuration and dynamic inventory 

allocation policies. This approach represents facilities as nodes in a network with decision variables determining 

optimal location sizes and capacities. Manufacturer plants and final customers markets are designated as special 

nodes to model the supply and demand boundaries. A Lagrangian relaxation scheme is applied to decompose the 

large MILP into tractable sub problems for solution efficiency. The network structure is exploited to derive 

optimality conditions that enable iterative policies to reach coordination. Computational experiments across 

demand scenarios were conducted to assess balancing costs and fill rates under various flexibility settings. To 

apply Lagrangian relaxation, we identify the following complicating constraints: (2, 3, 4, and 9) that couple the 

facility location (Y)) and assignment (X) decisions. We introduce non-negative Lagrangian multipliers ʌ𝑘Ɐ k =

1, 2,3,4corresponding to these constraints. Where  

η𝑙𝑗 =∑(∑𝑐𝑙𝑗LAT
𝑗∈J

X𝑙𝑗 + (c𝑙LH + cplIp)Y𝑙 + f𝑙Y𝑙)

𝑙∈L

                                                                 (12) 

The partial Lagrangian function is form by moving the complicating terms to the objective function with their 

multipliers as follows: 

Lʌ = η𝑙𝑗 + ʌ1 (∑∑X𝑙𝑗
j∈J𝑙∈l

− 1) + ʌ2∑(∑X𝑙𝑗
𝑗∈J

− Yl)

𝑙∈L

+ ʌ3∑(φ𝑙Y𝑙 − SL
0)

𝑙∈L

+ ʌ4∑(τ𝑙Y𝑙 − SL
T)                                                                                                     (13

𝑙∈L

 )  

Subject to  

∑X𝑖𝑙
j∈J

≤ BY𝑗                                                                      Ɐj ∈ J                                                        (14) 

∑𝛼𝑙𝑗
𝑗∈J

≤ 1                                                                             Ɐ 𝑙 ∈ L                                                     (15)   
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Σd𝑙𝑗

M
≤ K𝑙                                                                            Ɐ𝑙 ∈ L,j∈J                                            (16) 

c𝑙S𝑙 ≤ SmaxlY𝑙Ɐ𝑙 ∈ L                                                                                                                (17) 

Yl  ∈ {0, }, for each                                                                                 Ɐ 𝑙 ∈ L                                      (18) 

Xlj ∈ {0,1}, for each                                                                Ɐ 𝑙 ∈ L 𝑗 ∈ J)                                (19) 

Taking the derivative of Lʌwith respect to each primal variable and Y𝑙X𝑙𝑗SL
0SLT setting it to zero, we derive the 

optimality conditions, we obtained ʌ3ʌ4= 0), so that 

𝑔(ʌj) = Lʌ3.ʌ4 = ηij + ʌ1 (∑∑X𝑖𝑗 − 1

𝑗∈J𝑙∈L

) + ʌ2∑(∑(𝑋𝑙𝑗 − Y𝑙)

𝑗∈J

)

𝑙∈L

                                  (20) 

This quantity 𝑔(ʌ)represents the minimum value achieved by Lʌhence the partial Lagrangian dual function. It 

forms the basis for the iterative sub gradient method to obtain the optimal primal solution. 

4.1.1 Sub-gradient Optimization 

Having derived the dual function 𝑔(ʌj)to develop the iterative algorithm for maximizing g and solving the dual 

problem, we apply a sub gradient optimization method. Where the partial derivatives of g with respect to the 

Lagrange multipliers ʌ1and ʌ2 is obtained, these partial derivatives represent sub gradients of g because g is non 

smooth due to the inequality constraints involved in the formulation of the primal problem. Specifically, the dual 

problem is as follows: 

𝑚𝑎𝑥  𝑔(ʌ)                                                                                                                                                      (21)                                                                 

Subject to 
ə𝑔

əʌ1
=∑∑𝑋𝑙𝑗

j∈J𝑙∈L

= 1                                                                                                                          (22)  

ə𝑔

𝑔ʌ2
=∑(∑X𝑙𝑗 − Y𝑙

j∈J

)

𝑙∈L

                                                                                                                    (23) 

Here, the gradients are: 

s1 = 𝛻ʌ1𝑔∑∑X𝑙j − 1

j∈J𝑙∈L

                                                                                                                      (24) 

s2 = 𝛻ʌ2𝑔 =∑(∑X𝑙𝑗 − 𝑌𝑙
j∈J

)

𝑙∈L

                                                                                                        (25) 

To solve this via the sub-gradient method, we initialize the multiplier vector as follows: 

ʌ1(0) = 0                                                                                                                                               (26) 

ʌ2(0) = 0                                                                                                                                               (27) 

The sub-gradient algorithm then iteratively updates the multipliers at iteration k as follows: 

ʌ1(k + 1) = ʌ1(k) +α(k) .s1(𝑘)                                                                                                            (28) 

ʌ2(k + 1) = ʌ2(k) +α(k) .s2(𝑘)                                                                                                            (29) 

Where α(k) =
c

√k
 Ɐk ‡ 0 k is the step size, where c is a constant (Polyak, 1987).  

This satisfies the conditions of being positive, summation to infinity, and square summable. Repeat until 

convergence of ʌ𝑗. 

4.1.2 Algorithm for the Subgradient Method for Solving the Dual Problem 
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1: Initialize: k ⃪ 0, chose α(k) step size rule ʌ1(0), ʌ2(0) 

2: while not convergence do 

3: Compute the subgradients: s1(𝑘) ⃪ 𝛻ʌ1𝑔 = ∑ 𝑗 X𝑖𝑗 − 1 s2(𝑘) ⃪ 𝛻ʌ2𝑔 = ∑ 𝑗 X𝑖𝑗 − Y𝑙 

4: The gradient ascent step: ʌ1(k + 1)⃪ ʌ1(k) + α(k)s1(𝑘)  ʌ2(k + 1)⃪ ʌ2(k) +α(k)s2(𝑘) 

5: k⃪ k+1 

6: if max(⃓s1(𝑘)⃓, ⃓s2(𝑘) ⃓) ˂ 𝜖  then 

7: break 

8: end if 

9: Update step size: compute new α(k) 

10: end while 

11: Primal variables are recovered: find  𝑥∗, 𝑦∗ from ʌ1
∗ , ʌ2

∗  

12:   

13: Return  ʌ1
∗ , ʌ2

∗ , 𝑥∗, 𝑦∗ 

4.2 Numerical Simulation Results  

The numerical simulation results for the performance metrics in the distribution of Moderna for 1st dose and 

Oxford Astrazenica for 2nd dose of COVID-19 vaccine across the vaccination centers in Delta central senatorial 

district 8 (eigh)t local government area in Delta state, Nigeria, are shown in Table 4, with performance metrics 

for demand locations shown in Figure 1. To conduct computationally intensive modeling and optimization, the 

University s high-performance computing HPC cluster was used. Each compute node contained: 

 • Intel Core i5-9700K 3.60 GHz processor  

• 32GB DDR4 2666 RAM  

• 1 TB solid-state drive for data storage  

The cluster comprised 40 identical nodes interconnected through an InfiniBand EDR 100 Gbps fabric. Workloads 

were scheduled on the Slurm resource manager using a message passing interface (MPI) for parallelization. 

Simulations were implemented in Python 3.8 using NumPy, Pandas, and Matplotlib. The Pyomo optimization 

modeling language, along with CBC and SCIP mixed integer programming solvers, was employed to formulate 

problems and obtain optimal solutions. This HPC configuration was essential for systematically exploring large 

solution spaces across many random problem instances within reasonable time frames. Parallelization facilitates 

solving industry scale cases with hundreds of nodes to achieve scalability of the benchmark algorithm. 

Table4. Numerical Simulation Results for the Distribution of the Moderna (1st dose and Oxford Astrazenica (2nd 

dose of COVID-19 Vaccine 

S/N                   SL𝑙 
0                        SL𝑙

T                      Ꞷ𝑙                    ∑𝛼𝑙𝑗      

1  0.71   0.90  0.40  0.20 

2   0.90   0.94  0.02   0.21 

3   0.81    0.95   0.04   0.88 

4   0.78   0.81  0.04   0.51 

5   0.81   0.84   0.08  0.22 

6   0.79   0.97   0.03   0.61 

7  0.82   0.95   0.07   0.59 

8   0.83   0.87   0.05   0.71 

9   0.83   0.87   0.06   0.24 

10   0.74   0.82   0.02   0.87 
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11   0.94   0.93   0.02   0.49  

12   0.76   0.98   0.02   0.16  

13   0.79   0.87   0.01   0.54  

14   0.93   0.91   0.07   0.56 

15   0.76   0.94   0.08   0.61  

16   0.94   0.87   0.02   0.81  

17   0.87   0.98   0.01   0.51  

18   0.88   0.93   0.03   0.68  

19   0.81   0.95   0.04   0.70 

20   0.85   0.98   0.07  0.36  

21   0.91   0.88   0.07  0.54  

22   0.82   0.89   0.05   0.67  

23   0.75   0.83   0.06   0.37  

24   0.83   0.91   0.05   0.76  

25   0.77   0.96   0.07   0.63 

26   0.91   0.97   0.07   0.87  

27   0.78   0.82   0.07   0.31  

28   0.85   0.96   0.04  0.44  

29   0.89   0.85   0.02   0.89 

30   0.83   0.99   0.05   0.72  

31   0.94   0.93   0.06   0.64  

32   0.76   0.96   0.02   0.63  

33   0.97   0.96   0.04   0.47  

34   0.75   0.82   0.07   0.69  

35   0.71   0.82   0.03   0.53 

36   0.75   0.91   0.02   0.21  

37   0.76   0.91   0.07   0.80  

38   0.98   0.81   0.06   0.54  

39   0.79   0.95   0.04   0.23  

40   0.90   0.97   0.05   0.70 

 

Figure 1. SL𝑙
0,  𝑆𝐿𝑙

𝑇, ω𝑙 and  ∑𝛼𝑙𝑗  for the demand location 

5. Discussion of COVID-19 Vaccine Distribution Numerical Results 
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The formulated model was applied in the distribution of the Johnson and Johnson Moderna for 1st doss and   

Oxford Astrazenica for 2nd dose across the vaccination centers in Delta central senatorial district (eight local 

government areas in Delta state, Nigeria, as shown in Table 4 with the performance metrics results shown in 

Figure. The numerical simulation results in Table 4 will be analyzed and discussed based on the performance 

matrices in Figure 1 as follows: 

 Time Based Service Level (SL𝑙
T)Performance 

The results shows that (SL𝑙
T)  values across the 40 locations are consistently high, with most exceeding 0.85 and 

many reaching 0.95 or higher. This indicates that the optimized network is highly effective in meeting the time 

sensitive vaccine demand. The model successfully ensures that most demand is fulfilled within the critical time 

window e.  g., 6 hours for thawed vaccines which is a core objective of the research. 

 Instantaneous Service Level (SL𝑙
0)Performance 

The (SL𝑙
0) values are more varied, ranging from ~0.71 to 0.98, with several locations falling below 0.8. Lower 

SL𝑙
0values suggest that local stock alone is insufficient to meet all immediate demand. However, this is 

compensated for by the use of pipeline stock and lateral transshipments, which together boost the overall.𝑆𝐿𝑙
T 

This reflects a cost effective strategy in which local inventory is balanced with redistribution mechanisms. 

 Role of Pipeline Stockω𝑙 

The values ω𝑙  are generally low to moderate (mostly between 0.01 and 0.08), indicating that pipeline 

replenishment from central depots contributes modestly to meeting time-sensitive demand. This suggest that 

pipeline stock is a component of the strategy, it is not the primary mechanism for achieving high service levels. 

This may be due to the longer lead times or capacity constraints at the central depots. 

 The Role of Lateral Transshipments∑𝛼𝑙𝑗 

 The lateral transshipment contributions are significant and highly variable, ranging from 0.16 to 0.89. This 

highlights the critical role of lateral transshipments in mitigating local shortages. Facilities with low SL𝑙
0often 

have high ∑𝛼𝑙𝑗showing that the model effectively redirects surplus stock from neighboring hubs to meet urgent 

demand. This aligns with the research objective of leveraging supply chain flexibility to enhance responsiveness. 

The weighted average of 𝑆𝐿𝑙
Tacross all locations is consistently high, demonstrating that the system as a whole 

meets the time sensitive service level target. The model successfully integrates location, inventory, and 

transshipment decisions to achieve a resilient and responsive supply chain. The use of a queuing based inventory 

policy allows for dynamic adjustment to stochastic demand, which is essential during a pandemic. 

6. Conclusion 

The proposed multi-echelon queuing-theoretic model is validated by numerical simulation as a highly effective 

tool for designing resilient and responsive medical supply chains during pandemics. The model ensures that time-

sensitive medical supplies (like vaccines) are delivered within critical time windows by dynamically balancing 

local inventory with lateral and pipeline flexibilities, thereby minimizing waste and maximizing public health 

impact. 

7. Recommendation for the Feature Research Directions 

The study recommends extending and enhancing the proposed model in several key areas as follows: 

1. Model Generalization and Real-World Complexity: Incorporate more real-world factors, such as transportation 

reliability, road conditions, and climate impacts, into the cold chain. 

2. Supply Chain Scope Flexibility: Expand from a single product vaccine to a multi- product supply chain e.  g., 

vaccines, PPE, therapeutics and conduct a deeper cost benefit analysis of different flexibility mechanisms (e.g., 

lateral transshipment, higher base stock). 
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3. Integration of Human and Behavioral Factors: Human resource constraints (staffing and training) and 

workforce scheduling and behavioral factors, such as vaccine hesitancy and community acceptance, are included 

as endogenous variables affecting demand. 

4. Advanced Methodological Approaches: Game theory is applied to model interactions between multiple 

stakeholders, e.g., governments and private suppliers, and multi-stage stochastic programming is also formulated 

to handle sequential decision making under uncertainty. 

5. The findings of this study provide actionable policy insights for improving the resilience and responsiveness 

of medical supply chains during public health emergencies to significantly enhance the reliability of vaccine 

distribution systems. 
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