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 Rotor angle stability is a crucial aspect of reliable power system 

operation, especially in developing countries where grids are weakly 

interconnected and face rapid load fluctuations. This paper presents an 

in-depth small-signal stability assessment of the Nigerian 330 kV, 36-

bus, 13-generator power network via a detailed linearized state-space 

model based on eigenvalue modal analysis. Three control scenarios; no 

controller, governor only, and combined governor with power system 

stabilizer (PSS)—are examined across incremental loads using 

nonlinear differential-algebraic equations linearized by Taylor series 

expansion. Governor + PSS control significantly improves damping, 

stabilizes critical eigenmodes, and ensures satisfactory settling times. 

This study identifies nodes requiring additional control tuning and 

offers insights applicable to similar developing grid systems. 1 
 

 

1. Introduction 

Maintaining rotor angle stability—the ability of synchronous generators to retain synchronism following small 

disturbances—is fundamental for reliable power system operation. The premature loss of synchronism may 

cascade into widespread outages or blackouts, posing severe socio-economic impacts (Kundur, 1994; Sauer & 

Pai, 1997). 

Developing regions, such as Nigeria, face additional challenges due to relatively weak grid interconnections, 

infrequent deployment of supplementary damping controllers, and dynamic load conditions resulting from rapid 

industrialization and grid expansion efforts (Jokojeje, 2024; Onitsha et al., 2023). These factors increase 

vulnerability to rotor angle oscillations and potential instability. 

Despite the criticality, comprehensive system-wide modal analyses using eigenvalue techniques that incorporate 

practical control schemes for such grids remain scarce in the literature. This study addresses this gap by 
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conducting a rigorous eigenvalue-based stability assessment leveraging detailed modeling of the Nigerian 330 kV 

network, thereby providing actionable insights for grid operators and planners (Ghandhari, 2019; Bhukya et al., 

2019). 

2. Background and Literature Review 

Power system stability has been extensively studied since the early 20th century, with methodologies evolving 

from graphical equal-area criteria to sophisticated numerical simulations involving linearized multi-machine 

models (Leonard & Grigsby, 2017; Kundur, 1994). Small-signal rotor angle stability, often analyzed through 

eigenvalue and modal approaches, focuses on the system’s response to small perturbations representing typical 

operational disturbances. 

Previous studies have consistently shown that supplementary controllers, such as power system stabilizers (PSS), 

effectively damp power oscillations when combined with conventional governors (Falguni & Vijay, 2018; Ma et 

l., 2020). However, many such studies target well-developed grids with extensive measurements and control 

infrastructure. 

The Nigerian grid, composed of 36 buses and 13 generators at the 330 kV level, is a representative case of 

emerging power systems characterized by limited control deployment, making it imperative to assess stability 

under realistic operating conditions and control scenarios (Jokojeje, 2024; Onitsha et al., 2023). 

3. Methodology 

The Nigerian 330 kV system model includes 36 buses and 13 synchronous generators with parameters obtained 

from utility data (Jokojeje, 2024; Onitsha, 2023). The state-space model is implemented using 

MATLAB/Simulink and eigenvalue computations are conducted. 

Three control schemes are examined: 

 No Control: Generators with open-loop excitation and no supplementary control are used. 

 Governor Only: Primary turbine speed governors active to regulate the mechanical input power 

(Bhukya et al., 2019). 

 Governor + PSS: Governors supplemented with PSSs tuned according to the IEEE recommended 

practices (IEEE Std 421.5-2016). 

The incremental load steps from 0% to full load (100%) in 25% intervals simulate varying operational conditions. 

An eigenvalue analysis is conducted at each load level, at each load level, eigenvalue analysis is conducted to 

observe the impact on rotor angle mode stability for all generators. 

3.1. Mathematical Modeling 

3.1.1 Synchronous generator swing equation 

The swing equation governs the fundamental dynamic behavior of a synchronous generator rotor (Kundur, 1994): 

𝑀
𝑑2𝛿

𝑑𝑡2
= 𝑃𝑚 − 𝑃𝑒 − 𝐷

𝑑𝛿

𝑑𝑡
                                                                                                            (1) 

Where: 

𝑀 = 2𝐻/𝜔0 is the angular momentum constant related to the inertia constant 𝐻, 

𝛿 is the rotor angle, 

𝑃𝑚 is the mechanical input power, 

𝑃𝑒 is the electrical output power, 

𝐷 is the damping coefficient, 

𝜔0 is the synchronous angular speed. 
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3.1.2 Linearized Classical Model (Heffron-Phillips Model) 

The nonlinear system is linearized around an operating point. The rotor angle and speed deviations 𝛿 and Δ𝜔 

satisfy (Sauer & Pai, 1997) the following: 

𝑑𝛿

𝑑𝑡
= 𝜔0Δ𝜔                                                                                                                                                      (2) 

𝑑(Δ𝜔)

𝑑𝑡
=

1

2𝐻
(𝑃𝑚 − 𝑃𝑒 − 𝐷Δ𝜔)                                                                                                                  (3) 

Where 𝑃𝑒 can be expressed in terms of the internal voltage 𝐸′, terminal voltage 𝑉, and network reactance 𝑋: 

𝑃𝑒 =
𝐸′𝑉

𝑋
sin(𝛿)                                                                                                                                             (4) 

By expanding around an equilibrium angle 𝛿0 using Taylor’s series: 

𝑃𝑒 = 𝑃𝑒0 + 𝐾𝛿(𝛿 − 𝛿0)                                                                                                                                 (5) 

Where 

𝐾𝛿 =
𝐸′𝑉

𝑋
cos(𝛿0)                                                                                                                                        (6) 

3.1.3. Excitation and power stabilizer systems 

The exciter dynamics modeled by 

𝑑𝐸𝑓𝑑

𝑑𝑡
=

1

𝑇𝑒𝑥
(−𝐸𝑓𝑑 + 𝐾𝐴(𝑉𝑟𝑒𝑓 − 𝑉𝑡 + 𝑉𝑠))                                                                                                (7) 

where: 

𝐸𝑓𝑑 is the field voltage, 

𝑇𝑒𝑥 is the exciter time constant, 

𝐾𝐴 is the amplifier gain, 

𝑉𝑟𝑒𝑓 is the reference voltage, 

𝑉𝑡 is the terminal voltage, 

𝑉𝑠 is the output voltage of the stabilizer. 

The PSS output 𝑉𝑠 is typically modeled via a series of washout and lead-lag compensators characterized by time 

constants 𝑇𝑤, 𝑇1, and 𝑇2 (Ma et al., 2020): 

𝑉𝑠 = 𝐾𝑃𝑆𝑆

𝑠𝑇𝑤

1 + 𝑠𝑇𝑤

1 + 𝑠𝑇1

1 + 𝑠𝑇2
Δ𝜔                                                                                                                     (8) 

where: 

𝐾𝑃𝑆𝑆 is the PSS gain, 

𝑠 is Laplace variable, 

Δ𝜔 is rotor speed deviation. 

3.1.4. Formation of the State-Space Model 

The mechanical and electrical equations are combined into a state vector 𝐱: 

𝐱 = [𝛿, Δ𝜔, 𝐸𝑓𝑑 , 𝑉𝑠]𝑇                                                                                                                                       (9) 

The linearized state-space model is as follows: 

𝐱̀ = 𝐀𝐱 + 𝐁𝐮                                                                                                                                                  (10) 

where 𝐀 includes system dynamics and 𝐮 inputs. 

Stability is analyzed by solving the following: 

det(𝐀 − 𝜆𝐈) = 0                                                                                                                                            (11) 
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All eigenvalues 𝜆 must have negative real parts for stability (Ghandhari, 2019). 

5. Results 

5.1 Eigenvalue analysis 

Table 1 summarizes the real parts of the dominant rotor angle mode eigenvalues under varying control schemes 

at full load: 

Generator Station No Controller Governor Governor + PSS 

Afam +0.12 -0.04 -0.19 

Delta +0.15 -0.01 -0.12* 

Egbin +0.10 -0.09 -0.24 

Kanji +0.07 -0.03 -0.18 

Note: * indicates marginally stable eigenvalue close to the imaginary axis. 

Uncontrolled operation reveals eigenvalues with positive real parts, confirming unstable rotor angle oscillations. 

Governor activation reduces instability but often remains marginal, especially under high load. 

Combined governor + PSS control significantly shifts critical eigenvalues into the left complex half-plane, thereby 

enhancing damping. 

5.2 Time-domain simulation 
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Figure 1: Rotor angle responses against time for the Afam Generating Station 

(a) 0% load: (b) 25% load. (c) 50% load and (d) 75% load (e) 100% load 
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(e)  

Figure 2: Rotor angle responses against time for the Delta Generating Station 

(a) 0% load: (b) 25% load. (c) 50% load and (d) 75% load (e) 100% load 

 

 

 

 
(a) 0 load change 

 

 

 
(b) 25% load change 
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(c) 50% load change 

 

 

 
(d) 75% load change 

 

 

 
(e) 100% load change 

Figure 3: Rotor angle responses against time for the Egbin Generating Station 

(a) 0% load: (b) 25% load. (c) 50% load and (d) 75% load (e) 100% load 
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(e)  

Figure 4: Rotor angle responses against time for the Kanji Generating Station 

(a) 0% load: (b) 25% load. (c) 50% load and (d) 75% load (e) 100% load 

Rotor angle oscillation waveforms for selected generators corroborate the eigenvalue results (Figures 1, 2, 3, and 

4). Only the governor + PSS achieved damping times below the acceptable 25 s benchmark stipulated in industry 

standards (Jokojeje, 2024). 

6. Discussion 

The findings confirm that supplementary PSS control is indispensable for rotor angle stability in developing grids 

with weak interconnections. Governor-only schemes provide limited damping and are insufficient under stressed 

loading conditions (Falguni & Vijay, 2018). 

Even with PSS, generators such as Delta show marginal stability, indicating the need for further controller 

refinement or network upgrades such as strengthening weak tie-lines or installing additional damping resources 

(Ma et al., 2020). 

Our approach demonstrates the utility of model-based eigenvalue analysis as a predictive stability assessment and 

control design tool for system operators (Ghandhari, 2019). 

7. Conclusion 

This comprehensive eigenvalue-based study provides the following evidence: 

i. The rotor angle stability without control is precarious for Nigeria’s 330 kV system 
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ii. Governor + Power System Stabilizer control achieves satisfactory damping and settling times. 

iii. Some nodes require additional focus to ensure robustness across all operating scenarios. 

This study provides a replicable framework for similar power systems in sub-Saharan Africa and other emerging 

grid contexts. 
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