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 Autonomous navigation of unmanned underwater vehicles (UUVs) 

has gained significance in oceanographic research, underwater 

exploration, and military applications. Traditional navigation 

methods like global positioning systems and inertial navigation 

systems are not fully reliable in underwater environments due to 

signal attenuation and multipath effects. This work proposes a 

Simultaneous Localization and Mapping (SLAM) approach based 

on the Unscented Kalman Filter (UKF) for UUVs equipped with a 

range sonar system. Unlike Extended Kalman Filter (EKF), UKF 

can handle highly nonlinear systems and provides consistent 

unbiased estimates. The proposed SLAM method aims to overcome 

the limitations of traditional dead reckoning methods, which 

accumulate navigation errors over time, by using environmental 

data measured during UUV navigation to obtain ground-fixed 

relative positioning information. SLAM algorithms have been 

successfully applied in terrestrial and aerial robotics, but their 

application in UUVs remains limited, primarily due to the 

challenges posed by the highly nonlinear motion of UUVs in 

underwater environments. 

In this study, the SLAM based on UKF is presented and evaluated 

through simulations in tank conditions. The UKF estimates the 

mean and covariance of the nonlinear system using weighted sums 

of sampled prior probability density function (PDF) evaluations, 

known as sigma points, instead of relying on the Jacobian matrix as 

in the EKF. The proposed method is expected to offer a more robust 

and accurate navigation solution for UUVs, particularly in highly 

nonlinear underwater environments. 

The simulation results demonstrate the effectiveness of the proposed 

SLAM based on UKF for UUVs equipped with a range sonar system. 

The UKF's ability to handle nonlinearities leads to consistent unbiased 

estimates, making it a promising alternative to EKF-based SLAM for 

UUVs. The study contributes to enhancing the autonomy and 

navigation capabilities of UUVs, enabling them to perform critical 
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tasks such as underwater exploration, inspection of ship hulls, and 

surveying underwater structures. 
 

 

Introduction  

Autonomous navigation of unmanned underwater vehicles (UUVs) is becoming increasingly important in 

oceanographic research, underwater exploration, and military applications. Traditional navigation 

methods, such as inertial navigation systems and global positioning systems, are not always reliable in 

underwater environments due to signal attenuation and multipath effects (Chyba, 2009); the use of these 

vehicles has also extended to the inspection of ship hulls (Walter et al., 2008) and underwater man-made 

structures (Kondo et al., 2006; Ribas et al., 2008) due to the UUV ability of autonomous navigation. Since 

GPS signal is not accessible underwater, the position of the UUV has usually been estimated via dead 

reckoning using an inertia measurement unit (IMU) and a kinematics model for vehicle motion. However, 

the method based dead reckoning is disadvantageous in that the navigation error becomes unbounded as 

the navigation time elapses due to the drift produced when integrating the IMU’s output; thus, it is 

necessary to provide some additional measures to prevent further error accumulation so that the ground 

fixed relative positioning information can be obtained (Lee et al., 2005). One of the alternative approaches 

that has been suggested to overcome the demerits of dead reckoning is a method that uses measured 

environmental data from the area through which the vehicle is passing; for example, it is possible to use 

the range and angle of identified objects that exist in the operating area as sources of information for a 

ground fixed relative position (Smith et al., 1997). Simultaneous localization and mapping (SLAM) is an 

alternative navigation method that measures the environment in which the vehicle is navigating and 

provides the relative position of the UUV. SLAM algorithms have been widely used in terrestrial and aerial 

robotics, but their application to UUVs is still limited. The highly nonlinear motion of UUVs in underwater 

environments makes the SLAM problem more challenging. (Smith et al., 1990).   

Since stochastic mapping, which is the basis of SLAM, is an estimation process, all estimation methods 

can be implemented into SLAM. Although any estimation method can be used in SLAM, many studies 

have applied an extended Kalman filter (EKF) to SLAM for indoor ground vehicles (Tardos et al., 2002), 

outdoor ground vehicles (Dissanyake et al., 2001), and underwater vehicles (Smith et al., 1997; Carpenter, 

1998; Newman, 1999; Leonard and Feder, 2001; Hwang and Seong, 2005; Folkesson et al., 2008; Ribas 

et al., 2008) because EKF is considered optimal when assumptions that the system is locally liner and the 

probability density function (PDF) is a Gaussian distribution are satisfied (Welch and Bishop, 2006). 

However, if a nonlinear system cannot satisfy the locally linear assumption, the result estimated by the 

EKF for the nonlinear system might yield a divergence; thus, it is not appropriate to apply EKF to SLAM 

for highly nonlinear systems. One of the alternatives to a SLAM based EKF is a SLAM with an unscented 

Kalman filter (UKF). A UKF (Julier and Uhlmann, 1997, 2004) not only estimates the mean and covariance 

of the nonlinear system, as EKF does, but also obtains the transformed PDF from the weighted sum of the 

evaluation of the nonlinear system equation at samples of prior PDF, called sigma points, instead of the 

Jacobian matrix of the nonlinear system equation.  

Up to now, since the UKF can produce a consistent unbiased estimate even when the system is highly 

nonlinear, recent studies have attempted to implement UKF into SLAM for unmanned land vehicles (Lee 

et al., 2006; Andrade-Cetto et al., 2005) and unmanned aerial vehicles (Langelaan and Rock, 2005), and 

to verify the SLAM with the UKF through simulations and experiments. However, although the motion of 

UUVs is usually nonlinear, there are few studies on SLAM with UKF for UUVs. Thus, a SLAM based on 

the UKF for UUVs will be proposed in this work and will be verified through simulations in tank 

conditions.   

This paper proceeds as follows. Section 2 describes the SLAM based on the UKF that is suitable for UUVs 

with a range sonar system. Section 3 presents the results of the simulations in tank conditions, conducted 

to verify the proposed SLAM method. Section 4 concludes the paper.  
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Simultaneous localization and mapping formulation with unscented Kalman filter  

A. State model    

Consider the SLAM problem in which a UUV is navigating in the ocean with multiple objects located 

adjacent to where the vehicle is operating. If the UUV is assumed to move in three degrees of freedom, the 

state of the vehicle can be written as:     

 ,          (1)    

where  denote the position in a three dimesional space;  denote the heading and pitch angle, respectively, 

and   denotes the total velocity. As the motion of the UUV is assumed to be divided into two planes, vertical 

and horizontal planes in this work, only surge, yaw, and pitch are considered in (1).    

The state of M objects acquired by the sensor on the UUV is given by their positions:  

 .     (2)  

The objects ’positions are assumed to be fixed and unassociated with each other.  

Since the system state vector in SLAM is defined as the combination of a vehicle state and an object’s 

state, the system state vector in this work is as follows:   

        .           (3)  

In this work, the vehicle motion is modeled with a second kinematics model, which is characterized by a 

constant velocity with white noise acceleration (Bar-Shalom and Forman, 1988). The discrete time state 

equation at time k and k+1 with sampling time is described as:    

 ,           (4)  

where 

are the process noises.  

B. Measurement model    

In this work, a range sonar system with four 

channels is considered for the device to 

obtain the spatial information of objects in the 

environment in which the UUV is navigating. Although the range sonar system can provide only the range, 

the measurements for the SLAM in this work are the distance and angles between the UUV and the objects, 

because it is able to obtain the angle information from the relationship of the UUV position and the fixed 

position of the range sonar sensor. Figure 1 shows the concepts of the measurement component, distance, 

and angles.  

Figure 1 Coordinate system and the measurement of range and angle.  

  
The measurement model for the four channel range sonar system is described as follows:   
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 .       (5)  

The subscript in (5) denotes the corresponding direction in the range sonar system. The orders of direction 

for the range sonar are front, starboard, port, and downward. The measurement model for single objects 

detected by the  range sonar at time k+1 is described as follows:   

 .        (6)  

  

In (6),   is the distance,  is the angle rotated from the z axis,    is the angle rotated 

from the y axis, and  represents the measurement noises of the sonar, which are assumed to have 

a zero mean white Gaussian noise with the covariance dependent on the sonar specifications.  

C. SLAM formulation    

The first step of the proposed scheme is the calculation of sigma points, which is the essential component 

of UKF. The prediction at time k+1 for the state system vector described in (3) is performed using the 

calculated sigma points through the weight sum method of the UKF. The prediction of the measurement is 

performed in the same manner as the prediction of the system state vector. Following the prediction, the 

measurement is made. After the measurement step, the detection of new objects is decided by ‘data 

association’, which determines whether the measurements obtained by the sonar are to be labeled as new 

objects or as existing objects already registered on the map. Data association is one of the most important 

SLAM factors for practical SLAM 

implementation because one incorrect data association can introduce divergence into the map estimate. 

Even though data association is an important problem in SLAM, in this work, the nearest neighborhood 

standard filter (NNSF) (Bar-Shalom and Forman, 1988) is used as the data association method instead of 

developing a new data association algorithm because the purpose of this paper is the implementation the 

SLAM based UKF into small UUVs. Measurements that do not correspond to existing objects through data 

association based on NNSF are considered as new objects and are registered. Whenever a new object is 

detected, it is added to the existing system state vector and covariance matrix using the stochastic map.  

As the operation time of the UUV increases, the sizes of the system state vector and its covariance matrix 

increase in identical proportions as a number of newly detected objects are added; the computational 

burden grows as 𝑂(𝑀2), where M is the size of the system state vector. This computational burden can 

become very large as the operation time increases. Therefore, it is necessary to adopt a method to reduce 

the computational burden. Previous studies have provided several alternatives that can reduce the 

computational burden (Newman 1999; Williams et al. 2002). In this paper, the local submap method (Kim, 

2004) is adopted. In the local submap method, the environment in which the UUV is navigating is divided 

into several local submaps, and the full covariance method is used to estimate the positions of the UUV 

and objects in a single submap.  

 Simulations in towing tank condition  

A. Conditions  

In order to verify the proposed method, several simulations were performed. It was assumed that the UUV 

is navigating in a water tank with a length of 120 m, breadth of 8 m, and depth of 3.5 m, while detecting 

the walls and floor of the tank and extra objects lying within the tank. Four sets of simulation conditions 

were chosen as shown in Table 1. Sets 1 and 2 are cases for two degrees of freedom motion in which the 

yaw varies with small and large angular motions; Sets 3 and 4 are those for three degrees of freedom motion 

in which the yaw and pitch vary.  In Set 3, the heading and pitch change sequentially, whereas in Set 4 

both angles change simultaneously. The extra objects are assumed to be located regularly in the tank. Three 
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channels (forward, left, and right) of the range sonar were used for the 2 degrees of freedom motion and 

an extra channel (downward) was used for the 3 degrees of freedom motion. A comparison between the 

proposed method and EKF based SLAM was performed to verify the function for UKFSLAM, which is 

proposed in this paper under nonlinear conditions. The basic parameters of the EKF are shown in Table 2. 

The standard deviation of acceleration, heading, and pitch were decided considering the specification of 

the SNUUV I under development.  

  

Table 1. Simulation conditions  

No 

.  

UUV  

Velocity  

No. of 

channels  

No. of extra 

objects  

UUV angle variation  

1  
0.1, 0.3, 0.5 

m/s  
3 ch.  4-8 objects  -5 ~ 5〫  

2  
0.1, 0.3, 0.5 

m/s  
3 ch.  4-8 objects  -10 ~ 10〫  

3  0.1, 0.3 m/s  4 ch.  0  

-10 ~ 10〫  

( respectively change of heading and 

pitch)  

4  0.1, 0.3 m/s  4 ch.  0  

-10 ~ 10〫  

(concurrent change of heading and 

pitch)  

  

Table 2. Basic parameters of EKF  

Parameters  Value  

Variance of vehicle acceleration  0.01 m/𝑠2  

Variance of vehicle angles  1°  

Variance of object position  1 m  

Variance of range  1 m  

Variance of angles  5°  

  

B. Simulation results  

Figure 2 shows several representative results for the 2 degrees of freedom motion simulation. The origin 

of the 2 dimensional map is the UUV starting point. The true positions of the UUV and objects (continuous 

walls and five isolated targets) are designated by a solid line (-) and circles (○), respectively, while the 

estimated positions of the vehicle and objects are shown using crosses (+) and x marks (ⅹ), respectively. 

The left and right column figures are the EKF-SLAM and UKF-SLAM results, respectively. From Fig. 2, 

when the nonlinearity of the UUV motion is weak (when the UUV velocity is slow and yaw variance is 

small), both methods show little error in the mapping and localization results; however, when the UUV 

moves quickly or the yaw varies with large angles, the UKF-SLAM provides more accurate mapping and 

localization results than the EKLSLAM. This verifies that the method proposed in this paper is suitable for 

the nonlinear motions of UUVs.  Figure 3 shows the UUV location estimation errors, i.e. the difference 

between the solid line and the crosses in Fig. 2. The solid line is the error from the UKFSLAM and the 
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dashed line is that of the EKF-SLAM. The EKF error increases once the heading angle begins to change 

at time 30 sec; that is, the nonlinearity occurred in the state transition as predicted in the theory.  

Figure 2. Simulation results of (a) EKF-SLAM and (b) UKF-SLAM for 2D motion depending on the 

heading angle changes and vehicle velocity.  velociy: 0.1 m/s, : 0~5  velociy: 0.1 m/s, : 0~5  

 
 0 5 10 15 x (m)20 25 30 35 40 0 5 10 15 x (m)20 25 30 35 40   

 (a) EKF-SLAM               (b)UKF-SLAM  

  

Figure 3. . Comparison of estimation errors of the UUV location using EKF-SLAM and  

UKF-SLAM in the 2D motion simulation; (a) along-track and (b) cross-track directions.  

 
(a) Along-track error (x-direction)                 (b) Cross-track error (y-direction)  



International Journal of Allied Research in Engineering and Technology (IJARET) Vol. 14 (4) 

 

 pg. 7 

The root mean square error (RMSE) of the EKF-SLAM is more than twice that of the proposed method. 

From Fig. 3, the RMSEs of the proposed method in the x and y directions are 0.233 m and 0.004 m in the 

upper section of Fig. 3, and 0.191 m and 0.004 m in the lower section of Fig. 3; however, the RMSEs of 

EKF-SLAM are 0.436 m and 0.014 m in the upper section of Fig. 3, and 0.428 m and 0.025 m in the lower 

section of Fig. 3.   

The simulation results of the three degrees of freedom motion are depicted in Fig. 4. The difference in 

performances of both methods is seen in the 3D motion simulation, where the nonlinearity is generally 

stronger.  Figure 4(a) and 4(b) show the EKF-SLAM and UKFSLAM simulation results for the Set 3 motion 

from Table 1 and Figs. 4(c) and 4(d) present the both method simulation results for the Set 4 motion from 

Table 1. The upper section of the Figs. 4(a), 4(b), 4(c) and 4(d) is the horizontal plane (x-y) results and the 

lower is the vertical plane (x-z) result. The same symbols in Fig. 2 are used to describe the true positions of 

the UUV and objects, the estimated positions of the vehicle and objects in Fig. 5. Figs. 4(a) and 4(b) prove 

the UKF-SLAM can produce the more accurate mapping and localization results than the EKF-SLAM when 

the heading and pitch vary simultaneously. The sequential motion results shown in Figs. 4(c) and 4(d) also 

show prove the UKF-SLAM is more suitable for nonlinear case than EKF-SLAM. Fig. 5 shows that the UKF-

SLAM provides more accurate mapping and localization results than the EKL-SLAM when the UUV motion 

is the three degrees of freedom motion. The simulation results clearly prove that the proposed method has 

better performance than that of EKF-SLAM when nonlinearity is strong.  

Figure 4. Simulation results of (a) EKF-SLAM and (b) UKF- SLAM for 3D motion depending on the 

heading angle changes and vehicle velocity.  

  xy plane velocity: 0.3 m/s : 0~ 10   :0 ~ 10   xy plane velocity: 0.3 m/s : 0~ 10   :0 ~ 10    

 
  x (m)   x (m)    

 (a) EKF-SLAM concurrent               (b) UKF-SLAM concurrent  

  

 
 (c) EKF-SLAM sequential                              (d) UKF-SLAM sequential  

Conclusion  

This paper presents a SLAM method that relies solely on range sonar data, which is suitable for a small 

UUV with a limited payload and computing power. The method uses an unscented Kalman filter to estimate 

the system state vector with multiple objects using a nonlinear system equation instead of a linearized 

equation when the UUV navigates in a three dimensional space. It also adopts the nearest neighborhood 
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standard filter for data association and the local submap method to reduce the computational power. The 

proposed method was tested through computer simulations under various conditions of varying the vehicle 

velocity, ranges, heading angles, and pitch angles. The simulation results showed that the proposed method 

produces better localization of the vehicle state and objects mapping in both two dimensional and three 

dimensional motions than that of the EKF-SLAM. Future works will investigate the feasibility of 

integrating SLAM into the total navigation system of real UUVs where it will function as a module that 

provides information about the surrounding environment and to experiment with the UUV and the 

proposed SLAM method in a fully autonomous navigation mode in the towing tank.  
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