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 Temporomandibular joint osteoarthritis (TMJ OA) is a condition 

characterized by severe pain and joint dysfunction in the 

temporomandibular joint. The main pathological change in TMJ OA is 

cartilage degeneration, and chondrocytes are the primary cell type 

within cartilage tissue. This paper explores the hypothesis that 

chondrocyte death plays a central role in the process of cartilage 

degeneration in TMJ OA. Specifically, it focuses on programmed cell 

death (PCD) as a regulated mechanism involved in the development of 

OA. The research progress on PCD in OA cartilage degeneration is 

discussed, offering new insights and ideas for future basic research on 

cartilage degeneration in TMJ OA. 
 

 

1. Introduction  

Osteoarthritis (OA) is a disease that can cause severe pain and dysfunction in any joint, including the 

temporomandibular joint (TMJ) [1]. Cartilage degeneration is the main pathological change in temporomandibular 

joint osteoarthritis (TMJ OA), and chondrocytes are the only cell type present in cartilage tissue [2]. Therefore, a 

basic hypothesis was formed that chondrocyte death is the central event in the overall cartilage degeneration 

process. Programmed cell death (PCD) is a form of cell death that can be regulated and is involved in the 

development of OA [3]. As a research hotspot, the purpose of this paper is to provide new inspiration and ideas for 

future basic research on cartilage degeneration in TMJOA based on the research progress of programmed cell 

death in OA cartilage degeneration.  

2. Apoptosis  

2.1 Apoptosis overview 

Kerr et al [4] formally and systematically defined apoptosis in 1972 as an active, physiological process of cell 

death that can be induced by cells under certain physiological or pathological conditions. The main morphological 

features include cell volume reduction, loss of mitochondrial membrane potential, nucleus fixation, and apoptotic 

vesicle formation, but the cell membrane remains relatively intact and does not activate the inflammatory 

response[5]. Depending on the conditions, the mechanism of apoptosis is divided into two pathways: endogenous 

and exogenous [6]. Exogenous apoptosis is mainly mediated by members of the tumor necrosis factor (TNF) 

family, which form death-inducing signaling complexes on the cell membrane and cause apoptosis [7]. 

Endogenous apoptosis is caused by changes in the intracellular environment such as endoplasmic reticulum stress 

and reactive oxygen species aggregation, which cause incomplete mitochondrial membranes, mitochondrial 

rupture, apoptotic vesicle formation, and consequently apoptosis [6].  
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2.2 Effect of chondrocyte apoptosis on cartilage degeneration in OA  

Chao et al [8] found that the progression of OA is closely related to apoptosis of chondrocytes. In the iodoacetic 

acid-induced TMJOA rat model, an early feature of cartilage degeneration is chondrocyte apoptosis [9]. Cysteine 

aspartate-proteinase-3 (caspase-3) plays an important role in apoptosis, and when stimulated exogenously or 

endogenously, it mediates chondrocyte DNA long chain breaks and apoptosis, affecting the development of OA 
[10].Mino-Oka et al [11]found that the effect of mechanical stress on condylar cartilage production, such as hypoxia-

inducible factor-1α ( hypoxia-inducible factor-1α, HIF1α), elevated protein expression of vascular endothelial 

growth factor (VEGF) and caspase-3-mediated chondrocyte apoptosis, which in turn caused significant cartilage 

degeneration. Secondly, in an interleukin-1β (IL-1β)-induced OA model in mice, Aucubin directly protected 

mouse articular cartilage tissue by inhibiting chondrocyte apoptosis and effectively slowed the progression of OA 

in mice [12]. Ding et al [13] found that in a lipopolysaccharide (LPS)-induced chondrocyte injury model, miR-93 

slowed down the inflammatory response by inhibiting chondrocyte apoptosis, which may be associated with 

activation of the TLR4/NF-κB signaling pathway.Therefore, chondrocyte apoptosis appears to be a potential 

target for therapeutic intervention in OA. 

3. Autophagy   

3.1 Overview of cell autophagy  

"Autophagy" was first introduced by Duve et al [14] in 1963. It is a phenomenon of cellular selfphagocytosis, in 

which cells under physiological or pathological conditions form autophagosomes (autophagy) by wrapping 

proteins and organelle degradation products by bilayers of rough endoplasmic reticulum or Golgi apparatus and 

other sources[15], and then combine with lysosomes to form autophagic lysosomes for digestion and degradation 

of various enzymes, and their breakdown products can be reused by cells, thus achieving the maintenance of cell 

The breakdown products can be reused by cells, thus maintaining cellular homeostasis [16]. Autophagy is a self-

protective and immunomodulatory mechanism that protects the host cells, but excessive reliance on autophagy 

can further lead to massive cell death in the host [15]. Autophagy is divided into the following three more common 

types: macroautophagy, microautophagy, and molecular chaperone-mediated autophagy. Autophagy is a highly 

complex and dynamic growth and evolutionary process in biological cells, which can be briefly divided into three 

complex developmental stages: phagocytic vesicle production, autophagic vesicle differentiation, and finally 

autophagic lysosome formation, and some major morphological features of autophagy can be clearly observed on 

transmission electron microscopy scans, such as crescent-shaped phagocytic vesicles and autophagic vesicles 

with an average diameter of 500 nm [17]. 

3.2 Effect of chondrocyte autophagy on cartilage degeneration in OA  

Autophagy-related proteins Beclin1, ULK1 and microtubule associated protein 1 light chain 3 (LC3) were found 

to be highly expressed in normal articular cartilage, but significantly reduced in articular cartilage and 

chondrocytes of OA patients [18]. Xue et al [19]also reported for the first time that some inflammatory factors could 

effectively inhibit the proliferation and reduce the autophagy rate of rat chondrocytes and that the 

PI3K/AKT/mTOR signaling pathway could promote autophagy in OA rat articular chondrocytes and thus reduce 

the inflammatory response. Moreover, rapamycin, often used as a receptor agonist for autophagy, can effectively 

promote autophagy to slow down the progression of OA [20]. In a study by Zhong et al[21]and others, miRNA-335-

5p expression was found to be significantly higher in normal chondrocytes than in OA chondrocytes. Similarly, 

in transfecting human OA chondrocytes with miRNA-335-5p mimics, cell viability and autophagy-related factors 

were increased as well as inflammatory factor expression was reduced. In conclusion, numerous studies have 

shown that autophagy dysfunction can lead to OA and that activation of autophagy can alleviate articular cartilage 

degeneration [22]. 

4. Pyrotosis  

4.1 Overview of cell scorch death  

In 2001, Brad Cookson et al [23]named for the first time a cysteinase-1 (caspase-1)-dependent but distinct from 

apoptosis mode of death as cytosolic scorch death. The morphological changes include the formation of many 

micropores and vesicles in the cell membrane, accompanied by cell swelling and rupture, as well as the secretion 

of various cytokines involved in the inflammatory response, which in turn produce pro-inflammatory signals to 
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surrounding cells and cause osmotic lysis of adjacent cells [24]. Cell scorch death is broadly classified into classical 

and non-classical pathways, mediated by caspase-1 and caspase-4/-5/-11, respectively. In the classical cell scorch 

pathway, when cells are damaged, NODlike receptor (NLR), apoptosis-associated spot-like protein (ASC) and 

caspase-1 constitute inflammatory vesicles (NLRP1, NLRP3, NLRC4, etc.), and caspase-1 activated by 

inflammatory vesicles directly shears Gasdermin D (GSDMD), the executive protein of cell scorch death, forming 

a plasma membrane pore of about 18 nm in size, resulting in massive release of inflammatory factors and damage-

associated molecular patterns (DAMPs), increased intracellular membrane osmotic pressure, and cell swelling 

and rupture death[25]. Unlike the classical pathway, the non-classical pathway does not require inflammatory 

vesicles but is directly activated by inflammatory factors such as lipopolysaccharide (LPS), and the activated 

caspase-4/5/11 shear the GSDMD, which after shearing produces the formation of plasma membrane pores, 

resulting in cell swelling, rupture and death [25].  

4.2 Effect of chondrocyte scorch death on OA cartilage degeneration  

Cell scorching is closely associated with the development of OA and exacerbates cartilage degeneration[26].Zu et 

al [27]isolated and cultured human OA chondrocytes in vitro and detected increased levels of NLRP3, IL-1β, IL-

18 mRNA and protein expression.Icariside (icariin,ICA) attenuated LPSinduced chondrocyte by inhibiting 

NLRP3 inflammatory vesicles scorching and cellular inflammation, and it was further confirmed in a rat OA 

model that icariin (ICA) alleviated OA by inhibiting NLRP3mediated cellular scorching.Yan et al [28], in their 

analysis of a mouse model of OA, found that bivalirudin increased the thickness of hyaline cartilage as well as 

type II collagen expression and decreased matrix metalloproteinase 13 (MMP13), NLRP3, caspase-1, GSDMD, 

and IL-1β protein expression, suggesting that bivalirudin may slow the progression of OA by inhibiting scorch 

death. In addition, LIU et al [29]found that low-dose indomethacin and Hedgehog signaling inhibitors 

synergistically reduced the expression of caspase-1, IL-1β and IL-18 at the mRNA and protein levels after a more 

in-depth study, while attenuating cartilage damage in a mouse model of OA, suggesting that there may be a causal 

link between cellular scorch death and cartilage degeneration. The above indicates that cell scorch death does 

exist in OA chondrocytes, and the inhibition of cell scorch death mechanism may become a new idea for OA 

treatment.  

5. Necroptosis 

5.1 Overview of Necroptosis  

In the past, most scholars believed that cell necrosis was an active form of cell death, but after 2000, some scholars 

began to discover a non-cysteine aspartate protease (caspase) mediated by receptorinteracting protein 1 (RIP1), 

which has the characteristics of necrosis but is regulated by related genes [30]. In 2005, Degterev et al[31]first 

officially announced the name of this regulated necrosis as programmed necrosis. Morphological manifestations 

are early disruption of cell membrane integrity, altered osmotic pressure, and disintegration and release of 

cytosolic contents into the surrounding environment [32]. When programmed necrosis occurs, its cytosolic 

contents, such as high mobility group box-1 protein (HMGB), tumor necrosis factor-α (TNF-α), etc., can be 

directly used as damage associated molecular patterns (DAMPs). molecular patterns (DAMPs) are released into 

the surrounding environment and trigger inflammatory responses in the surrounding tissues [32]. Among them, the 

TNFα-mediated programmed necrosis signaling pathway has received the most attention and has been most 

intensively studied.  

5.2 Effect of programmed chondrocyte necrosis on OA cartilage degeneration  

Jana Riegger et al[33]found a possible link between cartilage degeneration and programmed necrosis. Zhang et al 

[34] found that the expression of programmed necrosis-related markers RIP1 and RIP3 were significantly elevated 

in chondrocytes under sustained mechanical force and could be reversed by programmed necrosis inhibitor (Nec-

1). Similarly, protein expression of RIP3 was found to be significantly higher in cartilage of OA patients than in 

normal cartilage [35]. In China, it has been reported that HMGB1 mRNA and protein expression were also found 

to be upregulated in articular disc and synovial specimens from TMJ OA patients and in an in vitro model of TMJ 

OA induced by IL-1β[36][37]. Studies by Japanese scholars further confirmed the presence of large amounts of 

HMGB1 in the synovial fluid of OA patients and that its histopathological structure was significantly altered by 

inhibition of HMGB1 in a collagenase-induced OA model in rats[38].In their work, Liang et al [39]intervened in an 



Global Journal of Medical and Health Science vol. 10 (6) 
 

pg. 4 

unstable medial meniscus (DMM) mouse OA model by a programmed necrosis inhibitor (Nec-1). Model, showed 

that Nec-1 alleviated the inflammatory response, downregulated matrix metalloproteinase (MMP) and HMGB1 

protein expression, and significantly reduced OA cartilage destruction. This suggests that programmed necrosis 

plays an integral role in OA cartilage degeneration and may be a new therapeutic strategy by inhibiting 

programmed necrosis.  

6. Ferroptosis  

6.1 Overview of Ferroptosis  

In 2003, Dolma et al[40], in a joint study on the mechanism of RAS oncogene-mutated human foreskin fibroblast 

death induced by the small molecule Erastin, discovered a novel cell death mode that could not be reversed by 

the use of various cell death inhibitors such as apoptosis, necrosis, autophagy, and pyroptosis, but could be 

effectively reversed by treatment with the antioxidant vitamin E and iron chelator (desferrioxamine). In 2012, 

Dixon et al[41]first formally introduced this new form of programmed cell death, named " Ferroptosis", which is 

morphologically and biochemically different from other forms of programmed cell death. Morphological aspects 

show a gradual rupture of the cell membrane, a decrease in the size of mitochondria, an increase in the relative 

density of mitochondrial membranes, and a decrease or even disappearance of mitochondrial cristae, but the 

nucleus is basically normal in size[42]. Biochemical features include elevated lipid peroxidation, accumulation of 

iron and reactive oxygen species (ROS), depletion of intracellular glutathione (GSH), and inactivation of 

glutathione peroxidase 4 (GPX4)[43]. The mechanisms of iron death regulation are complex and involve mainly 

iron metabolism, lipid peroxidation metabolism and imbalance of antioxidant system. GPX4 has been shown to 

be a key regulator of iron death, and inhibition of GPX4 induced Ferroptosis in a mouse tumor model[44]. The 

results of Doll et al[45]suggested that long-chain esteryl coenzyme A synthetase 4 (ACSL4) is a key substance in 

triggering iron death-related mechanisms when GPX4 is inactivated.Chang et al[46]found that the oncogene p53 

promoted iron death by suppressing the expression of solute carrier family 7member 11 (SLC7A11).  

6.2 Effect of chondrocyte Ferroptosis on OA cartilage degeneration  

Up to now, the study of Ferroptosis in OA is at an early stage, and in TMJ OA is at a blank stage. However, there 

are some common features between the two, such as abnormal iron metabolism, lipid peroxidation and 

mitochondrial dysfunction. The lack of mechanisms to promote normal iron excretion in the body and the lack of 

effective blood circulation in articular cartilage also predispose iron ions to accumulate in cartilage for a long 

period of time, thus creating an iron overload environment[47]. As early as 2005, studies began to initially 

demonstrate that the concentration of iron in the synovial fluid of OA patients was much higher than that of 

rheumatoid arthritis patients and healthy subjects[48].In 2021, Yao et al[49]also found for the first time that 

chondrocytes could undergo iron death in a state of inflammation or iron overload, and that the iron death inducer 

Erastin selectively upregulated the protein expression of chondrocyte MMP13 and inhibited the protein 

expression of chondrocyte The results were reversed by ferroptosis inhibitor (Ferrostain-1), and similarly, intra-

articular injection of ferroptosis inhibitor (Ferrostain-1) in its rat OA model slowed cartilage degradation and 

increased protein expression of collagen II and GPX4, demonstrating that chondrocyte ferroptosis promotes the 

development of OA. In addition, it has been found that D-mannose slows the progression of OA by reducing the 

sensitivity of chondrocytes to ferroptosis[50]. It can be expected that as iron death in OA becomes more 

comprehensively studied, the use of ferroptosis for OA may become a new means of treatmen. 

7. Summary and Outlook  

In addition to the above, there are various cell death modes, such as Paraptosis, Methuosis, Oncosis, Anoikis, and 

Cuprotosis. In addition, there are multiple signaling pathways in OA cartilage degeneration, such as Notch [51] 

and Wnt/β-catenin [52] involved in apoptosis, NF-κB[53]involved in focal death, and PI3K/AKT [54]involved in 

autophagy. The research progress of programmed cell death in TMJ OA is a new clinical hotspot, but also faces 

great challenges. For example, it is sometimes difficult to effectively identify the regulatory roles of various types 

of cell death modalities at different times in the development of TMJ OA. Whether there is an interconnection 

between different forms of cell death. In this article, we would like to summarize the sources, concepts and 

mechanisms of programmed cell death, including apoptosis, autophagy, programmed necrosis, scorch death and 

iron death, and some of the current research progress in TMJ OA, hoping to lay the foundation for future research 
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on the role of cell death in TMJ OA, and to promote the development of new therapeutic targets, thus providing 

valuable clues for the development of related molecular targets. We hope to provide valuable clues and tools for 

drug development.  
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