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 The Internet of Things (IoT) is characterized by interconnected 

physical entities equipped with sensors and actuators, facilitating 

data gathering and sharing for informed decision-making. Central to 

the IoT infrastructure is the Wireless Sensor Network, with Binary 

Sensor Networks gaining prominence over traditional models. This 

shift is attributed to the scalability and cost-effectiveness of 

deploying numerous uncomplicated devices, which operate with 

limited resources. Unlike conventional approaches reliant on 

Received Signal Strength, binary sensors offer a robust alternative 

by delivering binary reports based on predefined thresholds, 

simplifying presence detection. This binary data profoundly impacts 

network coverage, deployment strategies, and accuracy in 

localization and tracking pursuits. This study examines various 

problem-solving methodologies utilizing binary information, as 

addressed by diverse research groups. 
 

 

Introduction  

The Internet of Things (IoT) is comprised of networks of physical objects with embedded sensors and 

actuators. These objects observe their environment and share the data they collect with each other, internet 

servers and people. This data is analyzed and the results are used to make decisions and affect changes [1]. 

Wireless sensor network plays a very important role in the infrastructure of Internet of Things (IoT) [2, 3, 

4].Binary Sensor Networks prevail the traditional Wireless Sensor Network nowadays due to the rationale 

that large numbers of simple and inexpensive individual devices are expected to be deployed or to be attached 

to the physical objectsfor the construction of IoT. These devices require minimal assumptions about sensing 

capabilities and usually come with limited resources regarding their processing capabilities, memory, and 

power. It alleviates the requirements of relying on the Received Signal Strength value which is known to be 

noisy due to the attenuation, reflection and refraction by the objects and the multi-path interference. Moreover, 

many sophisticated sensors or devices in traditional wireless sensor networks can also act as binary-detection 

devices easily by outputting a binary report with predefining a threshold for the measurements [5].This binary 

information indicates whether a device is present or absent within a predefined area and the range of this area 

directly affect the coverage  and the deployment of the network, as well as the positioning accuracy in the 
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widely studied localization and tracking problems.The methodology of a variety problems using binary 

information has been addressed by various research groups [6].  

The optimal detection ranges were determined using k-NN algorithm for 1-dimensional, 2-dimensional and 

3-dimensional spaces on the principle that node spacing can be derived from the detection range in [7]. These 

results can be used as the basis for the design of RFID-based positioning systems and other applications. 

However, they were obtained by minimizing the RMSE for a particular case, that is, when k-NN algorithm 

was used for localization. Therefore, there is no general conclusion regarding to the optimal detection range.  

Optimal arrangements of binary sensors were studied in [8].The authors aimed to maximize the number of 

unique distinguishable sub-regions partitioned by the sensing ranges of the sensors. An upper bound on the 

number of unique subregions is derived to be n2 −n+2, where n is the number of sensors.  

Paper [9] formulated a sensor network position estimation problem as a linear or semidefinite program, which 

is based on connectivity between nodes. The sensed binary information from the localneighborhood is used 

to build hop-based virtual distances and it is also suited for low-cost devices.Figure 1 shows a graph of 

connectivity of a network. The green nodes represent the reference nodes with known positions and the white 

nodes represent the target nodes with unknown positions. The edge represents the radio link between two 

nodes indicating that these two nodes are within the communicating range of each other. The objective is to 

localize the white nodes with the location information of green nodes and the connectivity of the 

network.Feasible solutions are described to the problem using convex optimization. Additionally, a method 

for placing rectangular bounds around the possible positions for the unknown nodes is given. However, this 

method requires centralized computation.Similar work on localization from connectivity can be found in [10].  

 
Fig. 1. Graph of connectivity of a general network.  

The APIT (approximate point in time) scheme is presented in [11-12]for range-free localization, which 

employs an area-based approach to perform localization estimation by isolating the environment into 

triangular regions between nodes. It is shown that the scheme performs best when an irregular radio pattern 

and random node placement are considered.   

A variety of analytical results were presented in [13] to aid in the design of sensor localization systems based 

on RSS, quantized RSS, or proximity measurements between sensors. The Crame´r-Rao bound is computed 

to compare the minimal attainable variances of unbiased location estimators for different cases. The results 

show that lower bounds for standard deviation in proximity-based systems are about 50% higher than the 

bounds for RSSbased systems. It is also shown that a system with just 3 bits of quantization can be enough in 

cases.   

The remaining of the paper is organized as follows. The mathematical formulation of the optimal detection 

range problem is presented in Section 2, followed by a numerical method to find the minimum region 

uncertainty and the simulation results. In Section 3, we formulate the problem by considering two fixed 

thresholds. We further generalized the problem by allowing different thresholds among sensors in Section 

4.The conclusion and future work are provided in Section 5.  
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1. With Binary Sensing  

1.1. Problem formulation   

We address a grid network with N by N nodes that are equidistantly located with separation distance equal to 

d. Let r be the distance that defines the range of the node. For a given r, the area is partitioned into several 

subregions. We denote the subregions by Si, i = 1,2,··· ,I with its area being Ai correspondingly, where I is the 

total number of partitions in this area and Ai represents the uncertainty area when some of the nodes detect the 

target, which is a function of r. Clearly, if we assume that a target may be anywhere in the area with uniform 

distribution, the probability that the target is in Si is given by pi = Ai/A, whereA = [(N −1)d]2. We definethe 

expected uncertainty Eu when a target is in the area by  

.  

The objective is to find the optimal r that minimizes the expected uncertainty. The problem canbe formulated 

as  

 
The optimal result is obtained when the region is equally partitioned, that is, when allpiare the same. The 

resulting optimal Eu is A/I2. Since limI→∞A/I2 = 0, it is obvious that there’s no uncertainty with large enough 

partitions. However, the region can hardly be equally partitioned due to geometric constraints caused by the 

sensing nature of the sensors.  

1.2. The numeric method   

The optimization problem is solved using numeric method by dividing the area into K small grids. For a fixed 

reading range r, we obtain a set of nodes that can detect the grid k, where k  1,··· ,K. By counting the number 

of grids that have the same set (Kj, where j  1,··· ,Jand J being the total number of different sets), we obtain 

the probability that the target lies in a certain subregion pj = Kj/K and hence the corresponding area Aj = pj · A. 

Therefore, the values of Eu for different r are computed and the minimum Eu and its corresponding rare 

obtained.  

1.3. Simulation results  

We consider a grid network with N by N nodes in a region of 10m by 10m. The examplesof a 2 by 2 and a 3 

by 3 network are shown in Fig. 2.  

 
  0  2  4  6  8  10  0  2  4  6  8  10  

  X Position (m)  X Position (m)  

  (a) The deployment of a 2 by 2 network.  (b) The deployment of a 3 by 3 network.  
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Fig. 2.The deployment of the grid network in a 10m by 10m region. The yellow circle represents the nodes, 

the red triangle represents the target and the dashed curve represents the detecting boundary.  

Figure 3(a) displays Eu as a function of r with different separation distances d. It shows that the smaller d  

(which means the higher density) achieved smaller Eu. However, smaller separation distance requires more 

nodes, and thus the system is more expensive, especially when the nodes are the readers and antennas. This 

is one of the motivations that the binary devices such as proximity sensors are explored to reduce the system 

cost and meanwhile improve the performance. Figure 3 (b) shows Eu as a function of the ratio r/d. Since larger 

detecting range requires more energy and is more vulnerable to the noise, we assume that r ≤ 1.5d, which 

means that the ratio is constrained to be less than 1.5. The optimal Eu is obtained at r/d = 0.9 and the results 

are shown in Table I. Therefore, people can set the sensing range to be 0.9 of the separation distancefor 

deployment in order to achieve a better localization performance.  

  
Fig.3.The expected uncertainty Eu with different separation distances.  

2. With Two Fixed Thresholds     

2.1. The problem  

Here we address the same optimization problem with the same network, but with each node having two 

thresholds. Denote the two sensing ranges to be r1 and r2 and let r1 ≤ r2 without loss of generality. We denote 

the expected uncertainty as Euu and our objective is to minimize Euu:  

   
2.2. The numeric method  

We solve the optimization problem using the same numeric method as that in the previous section by dividing 

the area into K small grids. To simplify the explanation, we regard the one node with two thresholds as two 

virtual nodes at the same location but with different sensing ranges. For the fixed reading ranges r1 and r2, we 

obtain a set of virtual nodes that can detect the grid k, where k  1,··· ,K. By counting the number of grids that 

have the same set (Kj, where j  1,··· ,J and J being the total number of different sets), we obtain the probability 

that the target lies in a certain subregion pj = Kj/K and hence the corresponding area Aj = pj · A. Therefore, we 

compute the value of Euu for different r1 and r2, and find the minimum Euu and its corresponding r1 and r2.  

2.3. Simulation results  

We consider a grid network with 2 by 2 nodes in a region of 10m by 10m as shown in Fig. 4.  
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Fig. 4.The deployment of a 2 by 2 network in a 10m by 10m region. Each node has two sensing ranges.  

Figure 5 displays Euu as a function of r1 and r2. Figure 5 (a) shows the result in a 2 by 2 network (d = 10m) 

and (b) shows that in a 5 by 5 network (d = 2.5m). The smaller d (which means the higher density) achieved 

smaller Euu. The optimal Euu is obtained at r1/d = 0.8 and r2/d = 1. The results are shown in Table I.  

  

 
  

3. With Two Thresholds in Multiple-Stage Case   

3.1. The problem  

We now consider the case of two thresholds in a sequential way, that is, we suppose at t1 the sensing range 

was set to be r1 and at t2 the range was set to r2. The objective is to find r2 that minimizes the uncertainty 

denoted by Euu2. In other words, the problem is to find an iterative way of choosing ranges so that the target 

is located as accurately as possible.  
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3.2. Simulation results  

1) Homogenous case: In this case, the nodes are assumed to be homogenous and hence their sensing 

ranges are the same from each other all the time. We consider a 2 by 2 grid network as an example. Suppose 

the sensing range of all nodes were fixed at r1 = 0.9d, then the regionwas divided into several subregions, for 

instance, 13 subregions as shown in Fig. 1 (a) and 4 different categories because some of the subregions are 

identical due to symmetry. The area of the subregions and the corresponding detecting sets by the 4 nodes are 

shown in Table II.  

TABLE II THE MINIMUM UNCERTAINTY Euu2  

i  1  2  3  4  5  6  7  

Ai  1.1666  1.1666  12.8615  1.1666  12.8615  7.5287  1.1666  

Sets  {0, 0, 0,  

1}  

{0, 0, 1, 

0}  

{0, 0, 1, 

1}  

{0, 1, 0, 

0}  

{0, 1, 0, 

1}  

{0, 1, 1, 

1}  

{1, 0, 0, 

0}  

Euu2min  0.2950  0.2950  3.7351  0.2950  3.7351  2.1226  0.2950  

  

  

  

i  8  9  10  11  12  13    

Ai  12.8615  7.5287  12.8615  7.5287  7.5287  13.7732  

Sets  {1, 0, 1,  

0}  

{1, 0, 1, 

1}  

{1, 1, 0, 

0}  

{1, 1, 0, 

1}  

{1, 1, 1, 

0}  

{1, 1, 1, 

1}  

Euu2min  3.7351  2.1226  3.7351  2.1226  2.1226  1.5676  

  

Figure 6 shows the expected uncertainty Euu2 at time t2 as a function of r2 and their minimum values, 

respectively. We can see that the uncertainty in the region detected by only 1 sensor achieves the minimum 

value 0.2950 due to the smallest area of the subregion and further division by the second range r2. The worst 

case is in the region detected by two nodes with minimum uncertainty 3.7351, which is still much better than 

that of the binary case with a minimum value of 10.8354.  
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Fig. 6.The expected uncertainty Euu2 at time t2 when all nodes have the same r2.  

2) Heterogeneous case: Different from the previous case, each node can determine its own threshold at 

every time instant. That is, the sensing range can be different among all nodes. In this case, we might be able 

to partition the region equally and hence achieves the optimalvalue . For example, in a 2 by 2 

grid network, 

.  

At time t2, we can also choose the ranges of the four nodes r2
m,m  {1,2,3,4} so that eachsubregion from t1 

can be further partitioned equally.  

4. Conclusion and Future Work  

This paper investigated the problem of finding the optimal detection range of sensors/devices which generate 

only binary information indicating whether the target is within its proximity by a predefined detection range 

in the Internet of Things infrastructure. The binary information is generated by predefining a threshold for the 

measurements.A methodwas proposed that determines the optimal detection range by minimizing the region 

uncertainty.We formulated the optimal detection range problem in three different cases where in the first case, 

each sensor has only one fixed threshold and in the second case, the binary information was generalized to 

quantized value with two fixed threshold values. In the third case, the problem was further extended to the 

cases where the two threshold values can be determined sequentially. For each case, we showed the simulation 

results using numerical methods to find the minimum region uncertainty.The results show that the proposed 

method is feasible for achieving an optimal detection range of sensors.Our future work includes to generalize 

it further to an arbitrary number of thresholds with an analytical solution, to adaptthe proposed methods to 

anirregular network of nodes where everything is done without a central unit, andto apply the results of 

optimal detection ranges in a practical localization problem.   
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