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 The past decade witnessed an unprecedented surge in consumer 

electronic devices, characterized by inherent limitations in 

computing prowess. This surge necessitates the establishment of a 

fortified ecosystem encompassing secure computing, storage, and 

communication protocols. The expansive influence of the consumer 

electronics market spans vital domains like communication, finance, 

and entertainment. In response, institutions within these sectors are 

compelled to align with regulations such as the Gramm-Leach-Bliley 

Act, which underscores the encryption of electronic customer 

information during transit or while residing in networks or systems 

vulnerable to unauthorized access. 

In parallel, the proliferation of Internet of Things (IoT) has ushered 

in a pressing challenge: devising robust security measures to shield 

exchanged data. In today's interconnected digital realm, safeguarding 

the privacy and integrity of transmitted data has metamorphosed into 

an imperative for seamless communication. Consequently, research 

endeavors have progressively delved into data security paradigms, 

engineering real-time storage solutions adaptable to a spectrum of 

applications and resilient against various forms of attacks. 

Notably, the advent of lightweight cryptography algorithms has 

emerged as a linchpin in fortifying resource-constrained devices 

within the IoT landscape. These algorithms represent a pivotal stride 

towards augmenting the security posture of an ever-expanding array 

of interconnected devices, ensuring their resilience against cyber 

threats. 
 

 

1. Introduction    

Over the last decade, consumer electronic devices, which are limited in capability, have experienced a period of 

exceptional growth and require creating a more secure computing, storage, and communications environment. 

While the consumer electronics market is growing and influencing wide fields of communication, financial 

institutions, entertainment, and other services must satisfy their requirements and suggestions for information 

security. The Gramm-Leach-Bliley Act, also known as the Financial Services Modernization Act and Federal 
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Financial Institutions Examination Council [1] suggests encryption of electronic customer information while it is 

in transit or storage on network or systems to which unauthorized individuals may have access.  As the consumer 

industry has grown, devices connected to the IoT require a significant challenge in preparing security solutions 

to protect the data exchanged [2]. In today's world of digital communication networks, the privacy and security 

of the transmitted data has become a necessity for communication [3]. Data security schemes have been 

increasingly explored over time to provide secure, real-time data storage for a variety of applications.[4, 5] and 

with respect to various attacks [6]. Recently many lightweight cryptography algorithms have been used in 

securing the resource constraint devices in IoT  

File system encryption is typically used to protect data in storage providing security requirements for electronic 

commerce transactions to make e-commerce transactions more secure [8]. Developers always desire to add new 

features to file systems that offer a clean and efficient data access mechanism transparent to user applications [9].   

Using the Linux Crypto API [10] tools, integrated into the kernel, you can quickly create new valuable features, 

such as encryption, for efficient file systems without changing kernels or existing file systems. The Crypto API 

is an approach to unify the interface between kernel modules using crypto routines and kernel modules providing 

crypto routines.    

This paper investigates the encryption/decryption performance of Crypto API cipher algorithms and demonstrates 

their applications in file system encryption using Cryptolop [11] and Dm-crypt tools [12, 13].  Customers who 

are still on the fence about adopting open-source software will find detailed instructions and information that 

could help them to move ahead with open-source strategies.    

2. Consumer Electronics File Systems    

Linux offers several different file systems to work with, such as cramfs and jffs2, which are highly used in 

consumer electronic devices. Flash memory is an increasingly common storage medium for CE devices as well. 

The cramfs is a read-only compressed file system, designed for simplicity and space efficiency [14, 15]. The 

cramfs uses a translation layer on flash devices to emulate a block device [16]. The Journaling Flash File System, 

version 2 (jffs2) [17], is a read/write compressed flash file system, commonly used in the embedded systems of 

consumer electronic devices. The jffs2 was specifically designed for embedded applications requiring persistent 

storage in flash memory. It places the file system directly on the flash chips to achieve this task. It can be mounted 

read/write and changes are preserved after a reboot [18].    

The jffs2 file system was designed for relatively small flash chips but has serious problems when it is used on 

large flash devices. The ext2 file system is the most portable of the native Linux file systems that we used in tests 

for comparison reasons.    

3. Tools to Create an Encrypted File System    

The IoT platform consists of tiny low-cost consumer electronics devices continuously exchanging data that  

are usually limited in terms of hardware, memory capacity, and processing power [19].   

Many devices use file systems to store critical information that requires absolute reliability and protection. Among 

several Linux tools that allow you to create an encrypted file system, we consider Cryptoloop and Dm-crypt 

specifically. They make it possible to create encrypted file systems within a partition or another file in the file 

system. These encrypted files can be moved to a CD, DVD, or USB memory stick, etc. Dm-crypt is based on the 

device mapper and is considered to be a much cleaner code write,   providing much more configuration flexibility 

than Cryptoloop. Cryptoloop and dm-crypt are based on the Crypto API and offer pretty much the same 

functionality. They can be used to add encryption to any of the standard Linux file systems without changing the 

file system code itself.   
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The user can specify one of the Crypto API symmetric ciphers with any allowed size key to create and mount an 

encrypted file system. Without the key, you can't access data in the file system. As a practical matter, we limited 

our search to well-known cipher algorithms integrated into the Linux kernel, such as aes, blowfish, cast6, serpent, 

and twofish [20]. This allows us to share encrypted file systems with others with a minimum amount of hassle.    

4. Timing Commands       

To get the timing of a code we used the Linux time shell command and a time-stamp counter. We developed a 

more accurate way to use a time-stamp counter, which keeps a count of every cycle that occurs on the 

processor[21]. The timestamp counter is a 64-bit register that is incremented every clock cycle. It can be read 

from both kernel space and user space, and the time-stamp counter is set to zero on reset. We used the read time-

stamp counter rdtsc(low_var, high_var)   macro, which reads the low half of the register into a 32-bit variable 

low_var, and the high half of the register into a 32-bit variable high_var. The rdtsc measures cycles.     

We then used the rdtsc macro as timers, calling it before and after the section of code we want to time. The 

difference, converted from ticks to seconds, became the elapsed time for one run of the code. The elapsed times 

are accumulated by timers as a cryptographic component of the completed instructions. These instructions 

include: create an encrypted file system, mount a file system, and read, write, copy, and remove a file, etc.  We 

then created a special kernel module and tested this timing method by encrypting and decrypting of a 1024-byte 

array using CryptoAPI cipher algorithms, as shown in Fig. 1.    

  

   
Fig. 1. Cryptography of 1024-byte array using testing timing method.  

We patched both cryptoloop.c and dm-crypt.c with created timers.    

We controlled the high half of the register to recover from overflows, but we did not need to access the whole 

register. Here is one of the code sections in the modified Cryptoloop module, to measure the encdecfunc(tfm, 

&sg_out, &sg_in, sz) procedure elapsed time:   unsigned long long ticks_elapse_total; //global timer unsigned 

long begl, begh, endl, endh;//local #include <asm/msr.h> // Machine-specific registers #include "cryptolapse.h" 

//External variable definition  

rdtsc(begl, begh);  

encdecfunc(tfm, &sg_out, &sg_in, sz);  

rdtsc(endl, endh);  

ticks_elapse_total += endl - begl;  

The ticks_elapse_total timer accumulates the encdecfunc procedure elapsed time during the 

encryption/decryption performance.    
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The low half of the register was sufficient in all our cases. Our 430-MHz system will overflow a 32-bit counter 

once about every 8.5 seconds, and a 2400-MHz system about every 1.7 seconds. The elapsed time we were 

benchmarking, reliably takes less time.  To avoid a counter overflow influence, we controlled a series of procedure 

elapsed times and ignored anyone that exceeded twice the previous elapsed time.      

5. System Setup    

To provide encryption, we used the Linux loopback device driver to present a file as a block device, optionally 

transforming the data before it is written and after it is read from the native file. Cryptoloop and Dm-crypt use a 

cryptographic framework, CryptoAPI, which exports a uniform interface for all ciphers we tested.   

   
Fig. 2. Benchmarks.  

We investigated three benchmarks shown in Fig. 2 for the loopback driver: (a) a raw device (e.g., /dev/hda9 and 

/dev/sda1), (b) a pre-allocated file, (c) another pre-allocated file and a special device that is required by Dm-crypt 

and jffs2 file system, such as MTD block and device-mapper [22]. The major difference between a raw device 

and a pre-allocated file is that a file system, created in a file, could be copied to flash memory.    

Both Cryptoloop and Dm-crypt, jffs2 encrypted file systems, follow benchmark (c) shown above. An encryption 

structure for dm-crypt commands is shown in Fig. 3.   

   
Fig. 3.  Dm-crypt jffs2 FS encryption structure.  

Here are complete instructions to create a Dm-crypt encrypted jffs2 file system on the pre-allocated file 

imagefs.jffs2: losetup /dev/loop0 image-fs.jffs2  

cryptsetup -c aes -y create image-fs.jffs2 /dev/loop0  

mkfs.jffs2 -e128 -p33554432 -d empty -o /dev/mapper/image- fs.jffs2 modprobe blkmtd erasesz=128 

device=/dev/mapper/image-fs.jffs2 mount -t jffs2 /udev/mtdblock0 mnt  
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The instructions to create Cryptoloop encrypted jffs2 file system on the pre-allocated file image-fs.jffs2: losetup 

-e aes-256 /dev/loop0 image-fs.jffs2  

mkfs.jffs2 -e128 -p33554432 -d empty -o /dev/loop0 modprobe blkmtd erasesz=128 device=/dev/loop0 mount -

t jffs2 /udev/mtdblock0 mnt   

Both cramfs and ext2 file systems, encrypted by Cryptoloop, follow benchmark (b) in Fig. 2. We created ext2 file 

systems on the pre-allocated file image-fs.ext2 using these instructions:     

losetup -e aes-256 /dev/loop0 image-fs.ext2 mkfs.ext2 -b 1024  /dev/loop0  mount -t ext2 /dev/loop0 mnt   

 We then created cramfs file systems on the pre-allocated file image-fs.cramfs using these instructions:     

losetup -e aes-256 /dev/loop0 image-fs.cramfs mkfs.cramfs dir-root-files  /dev/loop0  mount -t cramfs /dev/loop0 

mnt   

Both cramfs and ext2 file systems, encrypted by Dm-crypt, follow benchmark (c) in Fig. 2. We then created Dm-

crypt ext2 file systems on the pre-allocated file image-fs.ext2 using these instructions:      

losetup /dev/loop0 image-fs.ext2   cryptsetup -c aes -y create image-fs.ext2  /dev/loop0 mkfs.ext2 

/dev/mapper/image-fs.ext2  mount /dev/mapper/image-fs.ext2 mnt   

 We then created Dm-crypt cramfs file systems on the preallocated file image-fs.cramfs using these instructions:   

losetup /dev/loop0 image-fs.cramfs  cryptsetup -c aes -y create image-fs.cramfs /dev/loop0 mkfs.cramfs  dir-root-

files  /dev/mapper/image-fs.cramfs  

mount /dev/mapper/image-fs.cramfs mnt   

6. Test Beds    

Consumer electronics devices cover a wide-ranging field of electronics with a broad spectrum of processor speed, 

memory type, memory size, and data. We ran our tests using single user and multiuser modes on two workstations, 

430 MHzand 2.4 GHz. All tests took place on a 13.6GB disk and 128MB Flash Memory Key. To minimize the 

impact of cache and other I/O operations, all tests were performed on a cold cache, achieved by unmounting, and 

remounting the file systems, removing modules, and detaching the loop device between iterations. The tests were 

located on a dedicated partition in the outer sectors of the disk and in a flash memory key.  We documented the 

command elapsed time (real time), the time involved in the test kernel processes (sys time), and the elapsed time 

spent encrypting/decrypting (crypto elapsed time). We ran all the tests several times.    

7. Performance Comparison     

Security benefits of an encrypted file system necessitate encryption overhead time that makes operation 

performance slower from 47% for the twofish cipher algorithm to 113% for the cast6 cipher algorithm, as shown 

in Fig. 4.   This happened when writing a 50 MB file to an encrypted ext2 file system, which was created on a 

128 MB key flash by Cryptoloop. We also used different CryptoAPI cipher algorithms.   

   
Fig. 4. Write 50 MB file into 128MB key flash encrypted ext2 file system.  
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The most important commands related to the file system creation and usage are mkfs, mount, read, and write. 

Table 1 shows the cryptographic part of the performed commands on an encrypted 32 MB jffs2 file system using 

Cryptoloop and Dm-crypt.   

TABLE I ENCRYPTED JFFS2 FS COMMAND'S PERFORMANCE   

   
The encryption and decryption elapsed time level of commands is an important metric for analysis of encrypted 

file system performance. Based on the proposed timing method we compared and contrasted the file system 

performance of encryption by Cryptoloop and Dm-crypt cramfs, jffs2, and ext2 file systems, using Linux Crypto 

API cipher algorithms aes, blowfish, cast6, serpent, and twofish that are all licensed free for any use. For all 

cipher algorithms we used 256-bit key size.    

Jffs2 is a compressed file system that directly reads and writes to flash and scans all nodes at mount time. We 

assumed that files and folders that are to be encrypted by the file system require about 32 MB. To study the effects 

of encryption, we analyze jffs2 with small files (about 3% of the 32 MB file system size) and big files (about 30% 

of the 32 MB file system size). Dm-crypt and Cryptoloop show similar trends on small file sizes.   

  
Fig. 5. Mounting (mount) encrypted jffs3 file system with different file sizes performance.    

As the file size increases, Dm-crypt spends less crypto time than Cryptoloop (Table 1, Fig. 5). As you can see, 

each cipher algorithm requires a different crypto time (Fig. 6).    
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Fig. 6. Creation (mkfs) encrypted 32MB jffs2 file system using Cryptoloop and Dm-crypt and different ciphers.   

Table 1 and Fig. 5 show that jffs2 takes more time to mount a file system with bigger files since it scans all nodes 

at mount time.  As for cramfs, the contents are decrypted as needed, and the mount time is almost independent of 

file size in the file system. These results can also be seen in Table 2 which shows crypto elapsed time for 

commands on 32MB encrypted cramfs FS using Cryptoloop and Dm-crypt.   

This table shows that Cryptoloop performs faster creation and mounting of cramfs file systems than Dm-crypt 

and lags a little on reading both small and big files.    

TABLE IIENCRYPTED CRAMFS FS COMMAND'S PERFORMANCE  

  
For benchmarking Dm-crypt and Cryptoloop, we used our second2.4 GHz processor test bed.  We certainly see 

some different results due to the higher performance machine in Table 3 which shows crypto elapsed time for 

commands on 32MB encrypted cramfs and ext2 file systems, using Cryptoloop and Dm-crypt. We also tested 

crypto elapsed time for reading and writing of 1 MB file.      

For most of the operations, Cryptoloop, still outperforms Dm-crypt, and shows similar performance regarding 

each algorithm.  The biggest difference between cramfs and ext2 is the time it takes to make the file system.  The 

cramfs is clearly much faster than ext2.      

TABLE III ENCRYPTED FS COMMAND'S PERFORMANCE    
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8. Conclusion    

The contributions of this work are that we generalized benchmarks for Linux cryptographic file systems and the 

performance of Crypto API cipher algorithms. We showed the prototype of the implemented benchmarks to create 

the desired cryptographic file systems of your choice (jffs2, cramfs, and ext2) and mount it to the location of your 

choice (dedicated partition, file on another file system, CD, USB memory stick). We developed a timer module 

for timing investigation of cryptographic activities for the Linux Cryptoloop and Dm-Crypt methods and 

performed a comprehensive comparison of cipher algorithms (aes, blowfish, cast6, serpent, and twofish) and their 

usage in the ext2, cramfs, and jffs2 cryptographic file systems,  measuring more specific aspects of 

encryption/decryption performance in CE devices.  These results can be used by a system designer to estimate 

the crypto-timing consumption of encrypted cramfs, jffs2, and ext2 file systems.    
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