
 American International Journal of Computer Science and

Information Technology
Volume.7, Number 1;January-March, 2022;

ISSN: 2837-388X| Impact Factor:

 https://zapjournals.com/Journals/index.php/aijcsit

Published By: Zendo Academic Publishing

pg. 8

"CIPHERING FOR SECURITY: ASSESSING CRYPTOGRAPHIC FILE SYSTEMS IN

CONSUMER ELECTRONICS"

Sarah Elizabeth Davis1

Article Info Abstract

Keywords: Consumer

Electronics, Data Security,

Internet of Things (IoT),

Lightweight Cryptography

Real-time Data Storage

 The past decade witnessed an unprecedented surge in consumer

electronic devices, characterized by inherent limitations in

computing prowess. This surge necessitates the establishment of a

fortified ecosystem encompassing secure computing, storage, and

communication protocols. The expansive influence of the consumer

electronics market spans vital domains like communication, finance,

and entertainment. In response, institutions within these sectors are

compelled to align with regulations such as the Gramm-Leach-Bliley

Act, which underscores the encryption of electronic customer

information during transit or while residing in networks or systems

vulnerable to unauthorized access.

In parallel, the proliferation of Internet of Things (IoT) has ushered

in a pressing challenge: devising robust security measures to shield

exchanged data. In today's interconnected digital realm, safeguarding

the privacy and integrity of transmitted data has metamorphosed into

an imperative for seamless communication. Consequently, research

endeavors have progressively delved into data security paradigms,

engineering real-time storage solutions adaptable to a spectrum of

applications and resilient against various forms of attacks.

Notably, the advent of lightweight cryptography algorithms has

emerged as a linchpin in fortifying resource-constrained devices

within the IoT landscape. These algorithms represent a pivotal stride

towards augmenting the security posture of an ever-expanding array

of interconnected devices, ensuring their resilience against cyber

threats.

1. Introduction

Over the last decade, consumer electronic devices, which are limited in capability, have experienced a period of

exceptional growth and require creating a more secure computing, storage, and communications environment.

While the consumer electronics market is growing and influencing wide fields of communication, financial

institutions, entertainment, and other services must satisfy their requirements and suggestions for information

security. The Gramm-Leach-Bliley Act, also known as the Financial Services Modernization Act and Federal

1 Computer Information Systems Department, The School of Business, Medgar Evers College/ The City

University of New York, USA, 1650 Bedford Avenue, Room 2015-J, Brooklyn, New York 11225, USA

 American International Journal of Computer Science and Information Technology Vol 7(1)

pg. 9

Financial Institutions Examination Council [1] suggests encryption of electronic customer information while it is

in transit or storage on network or systems to which unauthorized individuals may have access. As the consumer

industry has grown, devices connected to the IoT require a significant challenge in preparing security solutions

to protect the data exchanged [2]. In today's world of digital communication networks, the privacy and security

of the transmitted data has become a necessity for communication [3]. Data security schemes have been

increasingly explored over time to provide secure, real-time data storage for a variety of applications.[4, 5] and

with respect to various attacks [6]. Recently many lightweight cryptography algorithms have been used in

securing the resource constraint devices in IoT

File system encryption is typically used to protect data in storage providing security requirements for electronic

commerce transactions to make e-commerce transactions more secure [8]. Developers always desire to add new

features to file systems that offer a clean and efficient data access mechanism transparent to user applications [9].

Using the Linux Crypto API [10] tools, integrated into the kernel, you can quickly create new valuable features,

such as encryption, for efficient file systems without changing kernels or existing file systems. The Crypto API

is an approach to unify the interface between kernel modules using crypto routines and kernel modules providing

crypto routines.

This paper investigates the encryption/decryption performance of Crypto API cipher algorithms and demonstrates

their applications in file system encryption using Cryptolop [11] and Dm-crypt tools [12, 13]. Customers who

are still on the fence about adopting open-source software will find detailed instructions and information that

could help them to move ahead with open-source strategies.

2. Consumer Electronics File Systems

Linux offers several different file systems to work with, such as cramfs and jffs2, which are highly used in

consumer electronic devices. Flash memory is an increasingly common storage medium for CE devices as well.

The cramfs is a read-only compressed file system, designed for simplicity and space efficiency [14, 15]. The

cramfs uses a translation layer on flash devices to emulate a block device [16]. The Journaling Flash File System,

version 2 (jffs2) [17], is a read/write compressed flash file system, commonly used in the embedded systems of

consumer electronic devices. The jffs2 was specifically designed for embedded applications requiring persistent

storage in flash memory. It places the file system directly on the flash chips to achieve this task. It can be mounted

read/write and changes are preserved after a reboot [18].

The jffs2 file system was designed for relatively small flash chips but has serious problems when it is used on

large flash devices. The ext2 file system is the most portable of the native Linux file systems that we used in tests

for comparison reasons.

3. Tools to Create an Encrypted File System

The IoT platform consists of tiny low-cost consumer electronics devices continuously exchanging data that

are usually limited in terms of hardware, memory capacity, and processing power [19].

Many devices use file systems to store critical information that requires absolute reliability and protection. Among

several Linux tools that allow you to create an encrypted file system, we consider Cryptoloop and Dm-crypt

specifically. They make it possible to create encrypted file systems within a partition or another file in the file

system. These encrypted files can be moved to a CD, DVD, or USB memory stick, etc. Dm-crypt is based on the

device mapper and is considered to be a much cleaner code write, providing much more configuration flexibility

than Cryptoloop. Cryptoloop and dm-crypt are based on the Crypto API and offer pretty much the same

functionality. They can be used to add encryption to any of the standard Linux file systems without changing the

file system code itself.

 American International Journal of Computer Science and Information Technology Vol 7(1)

pg. 10

The user can specify one of the Crypto API symmetric ciphers with any allowed size key to create and mount an

encrypted file system. Without the key, you can't access data in the file system. As a practical matter, we limited

our search to well-known cipher algorithms integrated into the Linux kernel, such as aes, blowfish, cast6, serpent,

and twofish [20]. This allows us to share encrypted file systems with others with a minimum amount of hassle.

4. Timing Commands

To get the timing of a code we used the Linux time shell command and a time-stamp counter. We developed a

more accurate way to use a time-stamp counter, which keeps a count of every cycle that occurs on the

processor[21]. The timestamp counter is a 64-bit register that is incremented every clock cycle. It can be read

from both kernel space and user space, and the time-stamp counter is set to zero on reset. We used the read time-

stamp counter rdtsc(low_var, high_var) macro, which reads the low half of the register into a 32-bit variable

low_var, and the high half of the register into a 32-bit variable high_var. The rdtsc measures cycles.

We then used the rdtsc macro as timers, calling it before and after the section of code we want to time. The

difference, converted from ticks to seconds, became the elapsed time for one run of the code. The elapsed times

are accumulated by timers as a cryptographic component of the completed instructions. These instructions

include: create an encrypted file system, mount a file system, and read, write, copy, and remove a file, etc. We

then created a special kernel module and tested this timing method by encrypting and decrypting of a 1024-byte

array using CryptoAPI cipher algorithms, as shown in Fig. 1.

Fig. 1. Cryptography of 1024-byte array using testing timing method.

We patched both cryptoloop.c and dm-crypt.c with created timers.

We controlled the high half of the register to recover from overflows, but we did not need to access the whole

register. Here is one of the code sections in the modified Cryptoloop module, to measure the encdecfunc(tfm,

&sg_out, &sg_in, sz) procedure elapsed time: unsigned long long ticks_elapse_total; //global timer unsigned

long begl, begh, endl, endh;//local #include <asm/msr.h> // Machine-specific registers #include "cryptolapse.h"

//External variable definition

rdtsc(begl, begh);

encdecfunc(tfm, &sg_out, &sg_in, sz);

rdtsc(endl, endh);

ticks_elapse_total += endl - begl;

The ticks_elapse_total timer accumulates the encdecfunc procedure elapsed time during the

encryption/decryption performance.

 American International Journal of Computer Science and Information Technology Vol 7(1)

pg. 11

The low half of the register was sufficient in all our cases. Our 430-MHz system will overflow a 32-bit counter

once about every 8.5 seconds, and a 2400-MHz system about every 1.7 seconds. The elapsed time we were

benchmarking, reliably takes less time. To avoid a counter overflow influence, we controlled a series of procedure

elapsed times and ignored anyone that exceeded twice the previous elapsed time.

5. System Setup

To provide encryption, we used the Linux loopback device driver to present a file as a block device, optionally

transforming the data before it is written and after it is read from the native file. Cryptoloop and Dm-crypt use a

cryptographic framework, CryptoAPI, which exports a uniform interface for all ciphers we tested.

Fig. 2. Benchmarks.

We investigated three benchmarks shown in Fig. 2 for the loopback driver: (a) a raw device (e.g., /dev/hda9 and

/dev/sda1), (b) a pre-allocated file, (c) another pre-allocated file and a special device that is required by Dm-crypt

and jffs2 file system, such as MTD block and device-mapper [22]. The major difference between a raw device

and a pre-allocated file is that a file system, created in a file, could be copied to flash memory.

Both Cryptoloop and Dm-crypt, jffs2 encrypted file systems, follow benchmark (c) shown above. An encryption

structure for dm-crypt commands is shown in Fig. 3.

Fig. 3. Dm-crypt jffs2 FS encryption structure.

Here are complete instructions to create a Dm-crypt encrypted jffs2 file system on the pre-allocated file

imagefs.jffs2: losetup /dev/loop0 image-fs.jffs2

cryptsetup -c aes -y create image-fs.jffs2 /dev/loop0

mkfs.jffs2 -e128 -p33554432 -d empty -o /dev/mapper/image- fs.jffs2 modprobe blkmtd erasesz=128

device=/dev/mapper/image-fs.jffs2 mount -t jffs2 /udev/mtdblock0 mnt

 American International Journal of Computer Science and Information Technology Vol 7(1)

pg. 12

The instructions to create Cryptoloop encrypted jffs2 file system on the pre-allocated file image-fs.jffs2: losetup

-e aes-256 /dev/loop0 image-fs.jffs2

mkfs.jffs2 -e128 -p33554432 -d empty -o /dev/loop0 modprobe blkmtd erasesz=128 device=/dev/loop0 mount -

t jffs2 /udev/mtdblock0 mnt

Both cramfs and ext2 file systems, encrypted by Cryptoloop, follow benchmark (b) in Fig. 2. We created ext2 file

systems on the pre-allocated file image-fs.ext2 using these instructions:

losetup -e aes-256 /dev/loop0 image-fs.ext2 mkfs.ext2 -b 1024 /dev/loop0 mount -t ext2 /dev/loop0 mnt

 We then created cramfs file systems on the pre-allocated file image-fs.cramfs using these instructions:

losetup -e aes-256 /dev/loop0 image-fs.cramfs mkfs.cramfs dir-root-files /dev/loop0 mount -t cramfs /dev/loop0

mnt

Both cramfs and ext2 file systems, encrypted by Dm-crypt, follow benchmark (c) in Fig. 2. We then created Dm-

crypt ext2 file systems on the pre-allocated file image-fs.ext2 using these instructions:

losetup /dev/loop0 image-fs.ext2 cryptsetup -c aes -y create image-fs.ext2 /dev/loop0 mkfs.ext2

/dev/mapper/image-fs.ext2 mount /dev/mapper/image-fs.ext2 mnt

 We then created Dm-crypt cramfs file systems on the preallocated file image-fs.cramfs using these instructions:

losetup /dev/loop0 image-fs.cramfs cryptsetup -c aes -y create image-fs.cramfs /dev/loop0 mkfs.cramfs dir-root-

files /dev/mapper/image-fs.cramfs

mount /dev/mapper/image-fs.cramfs mnt

6. Test Beds

Consumer electronics devices cover a wide-ranging field of electronics with a broad spectrum of processor speed,

memory type, memory size, and data. We ran our tests using single user and multiuser modes on two workstations,

430 MHzand 2.4 GHz. All tests took place on a 13.6GB disk and 128MB Flash Memory Key. To minimize the

impact of cache and other I/O operations, all tests were performed on a cold cache, achieved by unmounting, and

remounting the file systems, removing modules, and detaching the loop device between iterations. The tests were

located on a dedicated partition in the outer sectors of the disk and in a flash memory key. We documented the

command elapsed time (real time), the time involved in the test kernel processes (sys time), and the elapsed time

spent encrypting/decrypting (crypto elapsed time). We ran all the tests several times.

7. Performance Comparison

Security benefits of an encrypted file system necessitate encryption overhead time that makes operation

performance slower from 47% for the twofish cipher algorithm to 113% for the cast6 cipher algorithm, as shown

in Fig. 4. This happened when writing a 50 MB file to an encrypted ext2 file system, which was created on a

128 MB key flash by Cryptoloop. We also used different CryptoAPI cipher algorithms.

Fig. 4. Write 50 MB file into 128MB key flash encrypted ext2 file system.

 American International Journal of Computer Science and Information Technology Vol 7(1)

pg. 13

The most important commands related to the file system creation and usage are mkfs, mount, read, and write.

Table 1 shows the cryptographic part of the performed commands on an encrypted 32 MB jffs2 file system using

Cryptoloop and Dm-crypt.

TABLE I ENCRYPTED JFFS2 FS COMMAND'S PERFORMANCE

The encryption and decryption elapsed time level of commands is an important metric for analysis of encrypted

file system performance. Based on the proposed timing method we compared and contrasted the file system

performance of encryption by Cryptoloop and Dm-crypt cramfs, jffs2, and ext2 file systems, using Linux Crypto

API cipher algorithms aes, blowfish, cast6, serpent, and twofish that are all licensed free for any use. For all

cipher algorithms we used 256-bit key size.

Jffs2 is a compressed file system that directly reads and writes to flash and scans all nodes at mount time. We

assumed that files and folders that are to be encrypted by the file system require about 32 MB. To study the effects

of encryption, we analyze jffs2 with small files (about 3% of the 32 MB file system size) and big files (about 30%

of the 32 MB file system size). Dm-crypt and Cryptoloop show similar trends on small file sizes.

Fig. 5. Mounting (mount) encrypted jffs3 file system with different file sizes performance.

As the file size increases, Dm-crypt spends less crypto time than Cryptoloop (Table 1, Fig. 5). As you can see,

each cipher algorithm requires a different crypto time (Fig. 6).

 American International Journal of Computer Science and Information Technology Vol 7(1)

pg. 14

Fig. 6. Creation (mkfs) encrypted 32MB jffs2 file system using Cryptoloop and Dm-crypt and different ciphers.

Table 1 and Fig. 5 show that jffs2 takes more time to mount a file system with bigger files since it scans all nodes

at mount time. As for cramfs, the contents are decrypted as needed, and the mount time is almost independent of

file size in the file system. These results can also be seen in Table 2 which shows crypto elapsed time for

commands on 32MB encrypted cramfs FS using Cryptoloop and Dm-crypt.

This table shows that Cryptoloop performs faster creation and mounting of cramfs file systems than Dm-crypt

and lags a little on reading both small and big files.

TABLE IIENCRYPTED CRAMFS FS COMMAND'S PERFORMANCE

For benchmarking Dm-crypt and Cryptoloop, we used our second2.4 GHz processor test bed. We certainly see

some different results due to the higher performance machine in Table 3 which shows crypto elapsed time for

commands on 32MB encrypted cramfs and ext2 file systems, using Cryptoloop and Dm-crypt. We also tested

crypto elapsed time for reading and writing of 1 MB file.

For most of the operations, Cryptoloop, still outperforms Dm-crypt, and shows similar performance regarding

each algorithm. The biggest difference between cramfs and ext2 is the time it takes to make the file system. The

cramfs is clearly much faster than ext2.

TABLE III ENCRYPTED FS COMMAND'S PERFORMANCE

 American International Journal of Computer Science and Information Technology Vol 7(1)

pg. 15

8. Conclusion

The contributions of this work are that we generalized benchmarks for Linux cryptographic file systems and the

performance of Crypto API cipher algorithms. We showed the prototype of the implemented benchmarks to create

the desired cryptographic file systems of your choice (jffs2, cramfs, and ext2) and mount it to the location of your

choice (dedicated partition, file on another file system, CD, USB memory stick). We developed a timer module

for timing investigation of cryptographic activities for the Linux Cryptoloop and Dm-Crypt methods and

performed a comprehensive comparison of cipher algorithms (aes, blowfish, cast6, serpent, and twofish) and their

usage in the ext2, cramfs, and jffs2 cryptographic file systems, measuring more specific aspects of

encryption/decryption performance in CE devices. These results can be used by a system designer to estimate

the crypto-timing consumption of encrypted cramfs, jffs2, and ext2 file systems.

References

Gramm-Leach-Bliley Act, (1999). [Online] Available: https://www.ftc.gov/business-guidance/privacy-

security/data-security (July 23, 2023) Careful Connections: Keeping the Internet of Things Secure, (2020).

[Online] Available: https://www.ftc.gov/business-guidance/resources/careful-connections-keeping-

internet-things-secure (July 23, 2023)

Sunny A. (2022). A Review on Various Methods of Cryptography for Cyber Security. Journal of Algebraic

Statistics, vol. 13, no. 3, 2022, 5016-5024.

Singhal, V., Singh, D., & Gupta, S. K., “Crypto STEGO Techniques to Secure Data Storage Using DES, DCT,

Blowfish and LSB Encryption Algorithms”, Journal of Algebraic Statistics. 2022, vol. 13, no. 3, p1162-

1171.

Pandey, A. & P. Bonde, P. Performance evaluation of various cryptography algorithms along with LSB

substitution technique. International Journal of Engineering Research & Technology (IJERT), vol. 2, no.

6, 2013, pp. 866871.

 American International Journal of Computer Science and Information Technology Vol 7(1)

pg. 16

Jammula, M., Vakamulla, V. M., &Kondoju, S. K. (2022). Performance evaluation of lightweight cryptographic

algorithms for heterogeneous IoT environment. Journal of Interconnection Networks, 2022 Supplement,

vol. 22, 1-21.

Mousavi, S. K., Ghaffari, A., Besharat, S., &Afshari, H. (2021). Security of internet of things based on

cryptographic algorithms: a survey. Wireless Networks (10220038), vol. 27, no. 2, 1515-1555.

Shyaa, G. S. & Al-Zubaidie, M. (2023). Utilizing Trusted Lightweight Ciphers to Support Electronic-Commerce

Transaction Cryptography. Applied Sciences (2076-3417), Jun2023, vol. 13, no. 12, 7085-7111.

Wright, C., Martino, M., & Zadok, E. NCryptfs: A Secure and Convenient Cryptographic File System. USENIX

2003 Annual Technical Conference, San Antonio, Texas, 197-210.

Broz, Milan, (2021), Dm-crypt: Linux kernel device-mapper crypto target. [Online] Available:

https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt (July 23, 2023)

Project ID: 195655. Cryptsetup and LUKS - open-source disk encryption. [Online] Available:

https://gitlab.com/cryptsetup/cryptsetup (July 23, 2023)

Notes on filesystem layout. [Online] Available: http://lxr.linux.no/source/fs/cramfs/README (July 23, 2023)

Ahn, S., Hyun, S., Kim, T. & Bahn, H. (2013). A compressed file system manager for flash memory

basedconsumer electronics devices. IEEE Transactions on Consumer Electronics, vol. 59, no. 3, 544-549.

Quinlan, Daniel. cramfs tools. [Online] Available: https://sourceforge.net/projects/cramfs/ (July 23, 2023)

Woodhouse, David (2003). JFFS2: The Journalling Flash File System, version 2. [Online] Available:

https://www.sourceware.org/jffs2/ (July 23, 2023)

Pan, Y., Hu, Z., Zhang, N., Hu, H., Xia, W., Jiang, Z., Shi, L., & Li, S. (2022). HNFFS: Revisiting the NOR Flash

File System. 2022 IEEE 11th Non-Volatile Memory Systems and Applications Symposium (NVMSA),

14-19.

Gookyi, D. A. N., Ryoo, K. (2022). A Lightweight System-On-Chip Based Cryptographic Core for Low-Cost

Devices. Sensors (14248220), Apr2022, vol. 22, no. 8, 1-28.

Stallings, W. (2020). Cryptography and Network Security: Principles and Practice. (8th ed.). Pearson (Chapters

3-7).

Corbet, J., Rubini, A., &Kroah-Hartman, G. (2005). Linux Device Drivers. (3rd ed.). O’Reilly (Chapters 7).

[Online] Available: https://www.oreilly.com/openbook/linuxdrive3/book/ (July 23, 2023)

Lomako, G. & Frank Delmas, F. Performance of Two Linux Methods for Encrypting Data at the File System

Level in CE Devices. In 4th IEEE Consumer Communications and Networking Conference, CCNC 2007,

Las Vegas, NV, USA, January 11-13, 2007, IEEE, 2007, 1176-1177.

https://gitlab.com/mbroz

