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 In the ever-evolving landscape of top-performing organizations, 

urgency has emerged as a transformative force, reshaping responses 

to dynamic business needs. The crucible of the COVID-19 pandemic 

has underscored the criticality of resilience, agility, and innovation. 

Resilience stands as a linchpin, enabling organizations to uphold 

acceptable service levels amidst severe disruptions to vital business 

services and processes. Agility, a complementary trait, is imperative 

for swift and adept responses to both opportunities and disruptions. 

Meanwhile, innovation entails leveraging Information Technology 

(IT) in novel ways to foster greater organizational efficiency and 

enhance alignment between business objectives and technological 

ventures. 

However, a fourth indispensable characteristic has crystallized in the 

realm of software development – urgency. It embodies the swiftness 

with which an unforeseen trigger exerts a substantial influence on the 

business, promptly necessitating action to address the trigger and 

modulate its repercussions and outcomes. The crucible of COVID-19 

birthed the imperative of urgent software development out of sheer 

necessity. 

In the current landscape, organizations are confronted with an 

amplified urgency to vie in an economic terrain profoundly shaped 

by a global pandemic. The Operation Warp Speed (OWS) initiative 

stands as a testament to the potency of urgency, leveraging the 

collective resources of the U.S. federal government and private sector 

to expedite the testing, production, development, and distribution of 

safe and efficacious vaccines, therapeutics, and diagnostics to combat 

COVID-19, achieving substantial milestones by January 2021. Akin 

urgency is palpable among companies operating and competing in 

today's economy 
 

 

Introduction  

A fundamental concept in cybersecurity is reducing data loss among other  resource  loss  to malicious 

individuals. As  such, mitigating such  threats  is essential in among other issues such as preventing network 
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penetration and recognizing illicit activity. However, the nature of  threats keeps  on changing and  hence 

determining patterns used  by  hackers could  be  essential in detecting incoming cyberattacks. These 

cyberattacks are  perfect examples  of imperfect information games. An example of an imperfect information 

game is poker. Poker is said to be imperfect because the strategy of the players is unknown. An example of a 

perfect information game would be chess because all the moves for all the chess pieces are known. For the 

purpose of this paper, the cybersecurity game of attacker versus administrator is modeled as an imperfect 

information game because strategies of the players are unknown.  

CFR consists of the family of algorithms which converges to Nash equilibrium in zero-sum games. While the 

calculations for the CFR can be cumbersome, the main idea involves creating better futures through learning 

from past mistakes. In CFR, there is an attempt to minimize regrettable decisions by taking the opposite of 

the bad decision, iteration after iteration. In other words, we loop through a scenario with decisions and 

counter decisions of a game tree and then prune the tree so that the bad decisions or regret are minimized  

through changes in the game tree iterations. CFR has an advantage that the memory required is linear in the 

size of the information set of the games. For each play in performing CFR, a separate information set tree is 

implemented.  

Among the most critical and well-studied topics in artificial intelligence are planning issues. Tree search 

algorithms that simulate ahead into the future, evaluate future states, and back up those assessments to the 

root of a search tree most usually solve them. Monte-Carlo Tree Search (MCTS) is one of the most common, 

efficient and commonly used among these algorithms. A traditional MCTS implementation uses cleverly built 

rules that are tailored for the domain's unique characteristics.   

Such rules govern where the simulation goes through, what to measure in the states that are entered, and how 

to back up those assessments. Usually, MCTS is regarded as an online planner, where a decision tree is 

constructed as the root node starts from the current state. The standard purpose of MCTS is to propose an 

intervention for only the root node. The system moves forward after the action is taken, and a new tree is 

created from the next state (statistics from the old tree may be partially saved or completely discarded). Thus, 

MCTS is a "local" procedure (in that it only returns an action for a given state) and is fundamentally different 

from the approaches to value function approximation or policy function approximation where a "global" 

policy (one containing all-state policy information) [4].  

The paper presents a unique combination of CFR and MCTS that can  accelerate the time required to execute 

defensive measures against a cyberattack. A loss function or cost function is a function in mathematical 

optimization and decision theory that maps an event or values of one or more variables into a real number 

that intuitively reflects some "cost" associated with the event. An issue with optimization aims at reducing 

loss. An objective function is to be optimized by either a loss feature or its negative feature (in particular 

domains, a fee feature, a benefit feature, a utility function, a health function, etc).  

Background Related Work  

In order to optimize an objective function (also known as a loss function), information-gathering concerns 

can be interpreted as sequential decision processes in which actions are chosen. Using myopic solvers (local 

minimum finder) that optimize the objective function over a limited time horizon usually overcomes the 

computational burden of decentralized coordination. Unfortunately, in general, the quality of solutions 

produced by myopic methods can be arbitrarily low[10]. However, submodularity analysis has recently 

shown that myopic techniques can achieve near-optimal efficiency, which has led to considerable interest in 

their application for data collection with multiple agents. Whereas theoretical guarantees are given by these 

greedy methods, they require a submodular objective function, which is not applicable in all cases. 

Furthermore, although these approaches also guarantee lower limits on optimality, by preparing over longer 

horizons (time intervals), the solution consistency can usually be increased. Similarly, decentralized task 

allocation approaches are also appropriate for simpler issues that only involve choosing one action per agent 
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rather than sequences of actions. In general, the decentralized active knowledge gathering can be seen as a 

partially measurable Markov decision. In decentralized type, method (POMDP) (Dec-POMDP). Dec-

POMDP formulations are usually solved through centralized, offline preparation over the joint multi-agent 

policy space (zero-sum game), and then these techniques are applied in a decentralized manner online [3]. In 

situations with broad sources of ambiguity, such as when the state of the environment is unknown in advance, 

these centralized, offline planning methods are impractical.  

A study carried out by Keith & Ahner (2020) [12] on new application of optimal and approximate solution 

techniques to solve resource allocation problems with imperfect information in the cyber and air-defense 

domains. This model developed a two-player, zero-sum, extensive-form game to model attacker and defender 

roles in both physical and cyber space with aims of reformulating the problem to find a Nash equilibrium 

using an efficient, sequence-form linear program. Solving this linear program produces optimal defender 

strategies for the multidomain security game. However, this model only addressed large problem instances 

with an application of the approximate counterfactual regret minimization algorithm as it reduces 

computation time by 95% while maintaining an optimality gap of less than 3%. This discounted 

counterfactual regret results in a further 36% reduction in computation time from the base algorithm helping 

to generate domain insights through a designed experiment to explore the parameter space of the problem 

and algorithm. We also address robust opponent exploitation by combining existing techniques to extend the 

counterfactual regret algorithm to include a discounted, constrained variant. A comparison of robust linear 

programming, data-biased response, and constrained counterfactual regret approaches clarifies trade-offs 

between exploitation and exploitability for each method leading to the understanding that linear programming 

approach is the most effective, producing an exploitation to exploitability ratio of 10.8 to 1.  

On the other hand, Schmid et al., (2019) [13] on variance technique (VR-MCCFR) found out that the use of 

MCTS allows estimates to be bootstrapped from other estimates within the same episode, propagating the 

benefits of baselines along the sampled trajectory; the estimates remain unbiased even when bootstrapping 

from other estimates. This shows that given a perfect baseline, the variance of the value estimates can be 

reduced to zero. Experimental evaluation shows that MCTS brings an order of magnitude speedup, while the 

empirical variance decreases by three orders of magnitude. The decreased variance allows for the first time 

CFR to be used with sampling, increasing the speedup to two orders of magnitude.  

Spaan et al. (2006) [8], on the other hand, presented a Dec-POMDP problem environment in which both 

preparation and execution are carried out in a decentralized manner; we approach our problem in a similar 

decentralized environment in such a way that computation is carried out online and on-board the agent Spaan 

et al. (2006) suggested a general Dec-POMDP solver where each agent solves a POMDP single-agent, shares 

its own plan details, then repeats or loops. Different agents  play  a different role in POMDP  with attacker 

and agents  of  attack  sharing same tree patterns.   

Although the type of problem considered in Counterfactual Regret Minimization and Monte Carlo Tree 

Search for Cybersecurity Threats, it is not formulated in general as a Dec-POMDP, extended algorithms could 

be constructed using partially observable Monte Carlo planning for the Dec-POMDP situation.  

MCTS has recently become famous for online planning. In several different ways, MCTS has been suggested 

(Browne et al., 2012) [9], but the upper-confidence bounds applied to trees (UCT) algorithm are by far the 

most common. Using a best-first policy which generalizes the UCB1 policy for  multi agent bandit or MAB 

issues, the UCT algorithm performs an asymmetric expansion of a search tree. The theoretical guarantees for 

a polynomial bound on regret are given by this expansion policy and are therefore said to balance exploration 

and exploitation. Several variants of UCT have been suggested, such as leveraging the reward function's 

smoothness. A novel UCT version, D-UCT, is a key component of Dec-MCTS algorithm ( whe is the 

proposed algorithm???) that accounts for an evolving distribution of rewards by using a new expansion 

strategy that generalizes the D-UCB policy for cyber threats detection. For partial-observability problems, 
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such as the POMCP algorithms, MCTS algorithms have also been extended and Dec-MCTS may be extended 

in a similar algorithm.   

In his work Neller & Lanctot (2013)[11] used Counterfactual Regret Minimization (CFR) is as worked 

example in solving Kuhn Poker and Rock-Paper-Scissors (RPS). RPS has  three gestures: rock (closed fist), 

paper (an open facedown palm) and scissors (two extension fingers). The RPS   illustrates   how close linkage 

of how one addition forces in a game must have one additional probability of reaching   information in a 

given set. The poker  concept of  randomization can be  translated  to  probability of cyber system attack  

where  distribution is not uniform. However, Neller &Lanctot (2013)[11] realized that such operation was 

not  possible without the assumption that players only play in axed bounded policy error policy.  

Systems and Metrics  

An important topic in this paper is the Dec-POMDP or Decentralized Partially Observable Markov Decision 

Process which  is an agent decision process that assumes  that the system dynamics are determined by an 

Markov Decision Process(MDP), but the agent cannot directly observe the underlying state. Instead, it must 

maintain a probability distribution over the set of possible states, based on a set of observations and 

observation probabilities, and the underlying MDP. Dec-POMDP is modeled by the tuple  

, where  is the number of agents.  is a set of states.  is the set of joint 

action, and  is a set of local action that agent  can take.  ′    represents the state 

transition.  The joint action  

) results in a new state ′ and a joint reward , where 

 is the joint action of teammates of agent  .     is the joint reward 

function.  is the set of joint observations controlled by the observation function .   

  is the discount factor. Dec-POMDP can model cybersecurity games.  

Also, an important metric that measures the success of a decision making model is the regret. Standard regret 

is represented by the equation: . Regret contains the  

maximum of the difference between utilities. Formulations that minimize the regret are most advantageous. 

An example of regret is counterfactual regret represented by the equation:  

 . The term      represents counterfactual 

utility, where utility measures the value of an outcome. During a game either a high or low utility in a game 

can measure the success of a set of strategies depend on the perspective of the players of the game.  

Monte Carlo Tree Search or MCTS is a family of algorithms that influence regret by maximizing reward. 

MCTS has four phases: selection, expansion, simulation and backpropagation. During the selection phase the 

algorithm processes the branch if the current branch is not a terminal leaf. The Upper Confidence Bound 1 

with Trees or UCT is used to select the nodes.   

The formula for UCT:  . wi stands for the number of wins for the node considered  

after the i-th move. ni stands for the number of simulations for the node considered after the i-th move.   

Ni stands for the total number of simulations after the i-th move run by the parent node of the one considered. 

c is the exploration parameter—theoretically equal to  in practice usually chosen empirically.  

The second phase of MCTS is the expansion phase. During the expansion phase, a new child node is added 

to the tree that node which was optimally reached during the selection process. After the expansion phase is 

the simulation phase. During the simulation phase a strategy is executed until a result or predefined state is 

achieved. Starting from the position of the child node, the simulation makes random moves repeatedly until 

the game is won or lost. The last phaseof MCTS is backpropagation. During backpropagation, the function 

backpropagates from the new node to the root node. After determining the value of  the newly added node, 
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the remaining tree nodes must be updated. During the process, the number of simulations stored in each node 

is incremented. Also. If the simulation of the new node results in a win, then the number of wins is also 

incremented. Following backpropagation, the algorithm returns to the selection phase and loops through the 

four phases until a path of highest wins emerges and the iterations run out.  

Main Findings and Numerical Results  

To measure the performance of counterfactual regret minimization (CFR) in comparison to discounted 

counterfactual regret minimization (DCFR)’s variable of exploitability. Exploitability is a count of the 

number of chips required to beat an opponent. For example, suppose a random strategy is employed and an 

exploitability of 175 is computed. This means that a worst-case opponent can beat the random strategy for an 

average of 175 chips. The higher the exploitability value the worse the strategy and the lower the 

exploitability value the better. When the exploitability for CFR is computed in comparison to a random 

strategy, CFR obtains an exploitability of around 1. Furthermore, when the exploitability for DCFR is 

computed in comparison to CFR, DCFR obtains an exploitability between 1 and 0. With the lower 

exploitability values of DCFR, one may argue DCFR has a better strategy in comparison to CFR that helps 

in defining paths  exploited by threats.   

 CFR    DCFR  

1.05092216 0.00189 1.10765839 

0.00059  

1.03305769 0.00057  

1.08745146 0.0003 1.26718855 0.0002  

  
Figure 1: CFR and DCFR comparison of Exploitability  

The MCTS path with the highest number of wins represents the best path. If a hacker attempts illicit access 

to a network, then there would be a deflection of the path. There are six sets of paths for the default versus 

alternative path.  

The most common path pattern occurs when the default path and the alternative path share common nodes 

besides the root node where the root node is common to all paths. When the default path and the alternate 

path share two nodes including the root node there appears to be an either downward drift or upward drift 

towards the terminal node. For example,suppose both the default path and the alternative path share the root 

and node two, when the bifurcation occurs at node two the default path follows a path parallel to the 

alternative path.   

More explicitly, after the bifurcation at node two, the default path from the node four to node sixteen takes 

the lower node from each branch until the terminal node is reached. Likewise, for the alternative path after 

the bifurcation at node two, there is a downward drift from node three to the terminal node fourteen.  
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Figure 2: MCTS Pattern 1, Share Node with Bifurcation 

Default Tree  Tree with alternative value optimal 

path=[16,10,4,2]  optimal path=[14,6,3,2]  

sum win=72  sum win=73   

An equally interesting attacker behavior occurs when three nodes, including the root node, are shared between 

the default path and alternate path. When three nodes are shared there appears to be a pre-terminal deflection 

followed by a terminal downward drift in one path, while there is a pure downward drift in another path. For 

example, suppose a default path and alternative path share the nodes two and six in addition to the root, and 

there is a bifurcation at node six. The default path deflects upward to node thirteen and then downward to 

terminal node sixteen. While the alternative path maintains a downward trajectory and drift for node six to 

node fourteen and then to terminal node twenty.  

  
Figure 3: MCTS Pattern 2, Two Shared Nodes with Deflection   
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Default Tree  Tree with alternative value optimal 

path=[16,13,6,2]  optimal path=[20,14,6,2]  

sum win=112  sum win=114   

For default paths and alternative paths that only share the root there appears to be divergent paths. As 

divergence occurs at the roots there is an upward drift of one path, while there is a downward drift for the 

other paths. With the divergence there occurs a partial path pre-terminal or terminal deflection. If you take 

for example a scenario where the default path runs from the root node and then to node two, then node four 

and finally node seven; that default path would have repeatedly selected the lower bound node with the 

exception of the deflection which occurred at the terminal node. On the other hand, the alternative path would 

run from the root node to node one, and then node five, then node nine, and then terminate at terminal node 

eleven. This alternative path has consistently chosen an upper node for each branch of the path, which is in 

deep contrast to the default path that mostly chose the lower nodes excluding the terminal.  

  
Figure 4: MCTS Pattern 3, Divergence   

Default Tree  Tree with alternative value  

optimal path=[7,4,2]  optimal path=[11,9,5,1]  

sum win=24  sum win=24   

In sharp contrast to the divergence of the default paths and alternate paths, there exist situations of 

convergence. When the default path progressively goes to higher nodes and the alternative path goes for 

successively lower nodes then convergence appears to manifest. For example, suppose the default path and 

alternate path bifurcate at the root node. The lower node representing the default path traverses an upward 

path and goes from node two to node three, while higher node synonymous with the alternate path, stems 

from the node one and charts a downward path to node twelve. However, in some cases after inner terminal 

node convergence occurs there can be episodes of emerging divergence. For example, after the default path 

converges upward from a downward node, there can be future divergence. The alternative path can diverge 

and can go upward to node thirteen.  



 American International Journal of Computer Science and Information Technology Vol 7(2) 

 

pg. 36 

  
Figure 5: MCTS Pattern 4, Convergence   

Default Tree  Tree with alternative value optimal 

path=[15,7,4,2]  optimal path=[13,12,6,1]  

sum win=58  sum win=58   

Another major category of MCTS path patterns are the single shared node similars, which happen to share a 

root but then diverge. However, after divergence occurs, the paths of both the default path and the alternative 

path appear parallel. The parallelism is seen as both paths either drifting upwards by selecting higher order 

branches successively or drifting downwards by selecting lower order branches until a terminal node is 

reached. An example of parallel drift occurs when after bifurcation of the root node the default path moves 

up from root to node one, and then from one to seven, and finally to terminal node. While the alternate path 

starting at the root goes to node two, and then goes up to node three, followed by node five and finally 

terminating at node nine.  

  
Figure 6: MCTS Pattern 5, Parallelism   

Default Tree  Tree with alternative value  

optimal path=[15,7,1]  optimal path=[9,5,3,2]  

sum win=64  sum win=64   
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The last major class of MCTS paths patterns are the identical paths. When the default path and the alternate 

path share all the same nodes, from root node to terminal branch then the paths are said to be identical. This 

is a strict definition compared to the other MCTS path patterns because the path patterns are not dogmatically 

adhered to.  The preceding path patterns served to provide a framework to understand the behavior of MCTS. 

As nothing in life is perfect the decision models of MCTS behavior fail to be perfect. These decision models 

however do provide a convention and vocabulary that help understand, predict and control MCTS; and 

therefore, create defensive measures.  

New Discoveries  

The combination of MCTS and CFR presented in this paper provide superior protection in comparison to the 

MCTS alone or CFR alone. By using CFR with MCTS there is earlierdetection of compromised resources. 

The detection time of the threat has the potential to be cut from down from months into weeks and therefore 

presents an essential alternative.  

Conclusion  

In summary, after repeatedly running the MCTS code and outputting default paths against alternate paths, the 

preceding patterns occurred. These pattern models are not perfect predictors of MCTS behavior and there exist 

many variants of the models described. However, combining the pattern models with the reasonable variants 

can cover most scenarios or situations where resources have been compromised.    

With more time and more resources, more rigorous insight into MCTS can be seen. However, the argument 

can be made that after modifying the code of MCTS there is a modification of the optimal path of MCTS.  
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