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 Zeno's paradox, originating in antiquity, ignited the debate over 

whether time should be conceived as a discrete or a continuous 

entity. The notion of an instant devoid of duration represents a 

culmination of centuries of contemplation, spurred by Zeno's 

enigma. Time, conventionally, is understood as an entity isomorphic 

to real numbers, and in light of every experience possessing some 

duration, we tend to conceive of times as either devoid-of-duration 

instants or as assemblages of such instants. Consequently, the 

customary approach involves defining time intervals using instant 

time points and their relative precedence (sets of instant time points). 

A dissenting perspective was championed by Russell, who proposed 

an inverse formulation: temporal instants should be constructed 

from what he termed events. His aim was particularly focused on 

deducing an instant of time (or a point on a line) from a period of 

time (or from an interval on this line). Wiener, in his seminal work 

[28], introduces an axiomatic framework addressing Russell's 

conundrum, enabling the definition of instants. To achieve this, he 

establishes a precedence relation defined on a set of events, subject 

to a specific condition: 
 

 

1 Introduction   

Zeno's paradox posed for the first time the question of whether time should be represented by a discrete or a 

continuous variable. The concept of a durationless temporal instant is quite sophisticated, the result of many 

centuries of experimentation in response to Zeno's puzzle. Time has long been accepted as a structure 

isomorphic to real numbers and since any experience has some duration, we've come to think of times as either 

durationless instants or collections of such instants. As a result, it is standard practice to define time intervals 

using instant time points and their precedence relationship (sets of instant time points). Russell, however, 

proposed to go the other way around: temporal instants should be constructed from what he calls events. He 

wanted especially to derive, an instant of time (or of a point on a line) from a period of time (or from an 

interval on this line). In his paper [28], Wiener provides an axiomatic frame for Russell's problem in which 

instants can be defined. To do that, he defines a precedence relation  defined on a set of events  satisfying 

the following condition:  

and imply   

where   means that   and  temporally wholly precedes  , i.e., every time at which   exists is 

temporally precedent to any time at which  exists. Russell and Wiener postulate that for each  

 
1 Dept. of Computer Engineering and Informatics, University of Patras, Patras, 26504, Greece 



 American International Journal of Computer Science and Information Technology Vol 7(4) 

 

pg. 12 

holds. We shall call statement  the Russell - Wiener axiom. Intuitively the formula states that if  precedes  

and is simultaneous with , and  procedes , then  precedes . The name interval order for these relations first  

appeared by Fishburn [6], [7]. Interval orders are important special classes of strict partial orders that arise in 

problems in graph theory, computer science, economics, psychology, biology, scheduling, and so on. For 

example, interval orders and the graph theory associated with their incomparability graphs, also called interval 

graphs, provide a natural model for the study of scheduling and preference models. Interval orders also have 

applications in distributed computing (vector clocks and global predicate detection), concurrency theory 

(pomsets and occurrence nets), programming language semantics (fixed-point semantics), data mining 

(concept analysis), etc.   

Generally, for many applications in computer science, the precise time of each event occurrence is usually not 

needed, but what really counts is the precedence relation. In most of these cases, the precedence relation holds 

for events and if ends before  begins, and thus according to this logic, we can construct a time model 

where each event corresponds to an interval representing its duration. In this case, two events are incomparable 

if their temporal durations overlap. By using the Russell-Wiener axiom, the transitivity of the precedence's 

axiom and the notion of overlapping intervals allow us to infer information regarding the sequence of events.   

Let's see an example which illustrates the use of interval orders in computer science. In scheduling modeled 

by precedence constraints, we have several tasks, say,  which have to be executed by a number of 

parallel processors . We are assuming that all processors are identical, and all tasks are known in 

advance and can be executed independently from each other. Each assignment of tasks to processors is called 

a schedule. The sum of the processing times of the tasks, assigned to a processor, is the load of this processor 

and, the maximum load of any processor is the length of the schedule. Our strategy here is an optimal schedule, 

that is, a schedule of minimal length. In the case where the precedence constraint is an interval order, 

Papadimitriou and Yannakakis [16] showed that if tasks are put into a list sorted by non-increasing size of 

successorsets, and whenever a processor becomes idleit executes the leftmost unscheduled task in the list that 

is ready for execution, then one obtains a schedule of minimal length (see also [20, Page 3]). Finally, if an 

interval order  represents the time intervals for a given set of tasks, the breadth (the maximum size of an 

antichain in R) gives an upper bound on how many tasks are running at thesame time. This has applications, 

for example, in register allocation on a computer CPU.   

On the other hand, it is commonly known that graphs are a powerful tool for modeling problems that arise in 

all areas of our life. A graph  is called an intersection graph for a non-empty family  of geometric 

objects if there is a one-to-one correspondence between and such that two geometric objects in have 

non-empty intersection if and only if their corresponding vertices in  are adjacent. Such a family of geometric 

objects is called an intersection representation of the graph. One of the most important intersection graphs are 

that of intervals on the real line and that of triangles defined by a point on a horizontal line and an interval or 

a unit interval on another horizontal line. Intersection graphs have natural applications in several fields, 

including bioinformatics and involving the physical mapping of DNA and the genome reconstruction.   

A partially ordered set or poset, , consists of a set  together with an irreflexive and transitive binary 

relation  on it. A realizer of a poset  is a family of linear orders on  whose intersection is the binary 

relation . Szprilrajn [21] first proved that a realizer for a partial order  always exists. Dushnik and Miller [3] 

defined the order dimension  of a poset to be the minimum cardinality of a realizer. The concept of 

order dimension plays a role that in many instances is analogous to the chromatic number for graphs. Spinrad 

[19] believes that order dimension is a parameter that in some sense measures the complexity of a partial order. 

In fact, various problems may be easier to solve when restricted to partial orders of small order dimension. 

There are efficient algorithms for determining whether a partial order has at most two-order dimension. In 

1982, Yannakakis [29] showed that testing if a partial order has order dimension  , where  , is  -

complete. Dimension seems to be a particularly hard -complete problem. This is indicated by the fact that 
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we have no heuristics or approximation algorithms to produce realizers of partial orders that have reasonable 

size (for details see [4], [8], [12], [19], [20], [26], [29]). The interval order dimension and semiorder dimension 

of a poset , denoted and , are defined analogously to the order dimension but with interval 

orders and semiorders instead of linear orders. Since strict linear orders are semiorders and semiorders are 

interval orders, we trivially obtain that order dimension is an upper bound and interval dimension is a lower 

bound for semiorder dimension. The dimension of acyclic binaryrelations   which are the intersection of 

orders from the same class  has been extensively investigated. In contrast, not much is known about 

dimension of acyclic binary relations which are the intersection of orders from different classes and . Two 

main examples in this area are linear-interval orders (resp. linear-semiorders) , i.e., acyclic binary relations 

where  , with   being a linear order and   being an interval order (resp. semiorder). The linear-

interval (resp. linear-semiorder) dimension is defined analogously to the order dimension but with linear-

interval orders (resp. linear-semiorders) instead of linear orders (see [13], [17], [22] and [23]).  

In this paper, we give three main results on: (i) the (linear-) interval order and (linear-) semiorder extensions 

of a binary relation; (ii) the existence of a realizer of a (linear-) interval order and (linear) semiorder of a binary 

relation; and (iii) the characterization of the (linear-) interval order and (linear-) semiorder dimension of a 

binary relation.   

These results give an analogue of the: ( ) Szpilran extension theory for posets[21], ( ) Dushnik and Miller [3] 

measure of poset complexity (order dimension) and ( ) Hiraguchi [10], Ore [15] and Milner and Pouzet [14] 

characterization of order dimension for posets, in the hybrid order case.  

2 Notations and definitions  

Let   be a non-empty universal set of alternatives and   be a binary relation on  . We sometimes 

abbreviate as . An abstract system [27] is a pair , where  is a set and  is a binary relation such 

that given  means that dominates . We say that  on  is (i) reflexive if for each ; (ii) 

irreflexive if we never have ; (iii) asymmetric if for all ; (iv) transitive if for 

all  and ; (v) antisymmetric if for each and ;  

(vi) total if for each  wehave   or  . Let   be the set of binary relations on  . The diagonal 

relation on  is defined by . A unary operator  is a mapping from to . Thus, given a binary 

relation   is a binary relation. We first define the basic unary operator for binary 

relations. Given a binary relation , the asymmetric part  of  is defined as follows:  

   and  .  

A closure operator is a unary operator  from  to  that satisfies the following three properties: for all , ′  

( φ (extensiveness); () ′ ′ (monotonicity) and (c)  (idempotence). For a 

particular property , a closure operation of is defined to be the smallest relation  that contains and has 

the desired property . Now, we provide two examples of closure operations. First, the transitive closure of a 

relation  is denoted by  , that is, for all   if there exists   and   such that 

for  

all and . Clearly,  is transitive and because the case is included, it follows that  

.Secondly, the reflexive closure of  is defined as follows:  

.  

The following combinations of properties are considered in the next theorems. A binary relation on  is: (1) a 

strict partial order if   is irreflexive and transitive; (2) a partial order if   is reflexive, transitive and 

antisymmetric; (3) an interval order if  is a strict partial order which satisfies the Russell-Wiener axiom; (4) 

a strong interval order (see [2, Definition 3]) if  is the reflexive closure of an interval order  where 

is an interval order); (5) a strict linear order if  is a total strict partial order and (6) a linear order if  is a total 

partial order. A subset  is an - 
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cycle if, for all , we have and . We say that  is acyclic if there does not exist an -cycle. 

A binary relation  is an extension of a binary relation  if and only if and . The (interval) 

order dimension of a partially ordered set  is the least  such that there are  (interval order) linear order 

extensions of whose intersection is .   

Since a linear order is a special case of an interval order and of a semiorder respectively, we conclude that a 

linear order extension of a binary relation  is also an interval order as well as a semiorder extension of . The 

converse is not true. In the simple example which follows this can be confirmed.   

Example 2.1. Let  be a set and let  and   be two 

relations on . Then, is an interval order extension of which is not a linear order and

is a semiorder extension of which is not a linear order as well.  

Cerioli, Oliveira and Szwarcfiter in [2] gave a common generalization of interval order dimension and (linear) 

order dimension of partial order . We extend this generalization in acyclic binary relations as follows: An 

acyclic binary relation  is called a linear-interval order if there exist a linear order  and an interval order  

such that  

. In this direction, we call an acyclic binary relation a linear-semiorder if its transitive closure is the 

intersection of a linear order and a semiorder (see [24]). Suppose  be a family of geometric objects. 

A graph  is an intersection graph if we can associate  to such that each  corresponds to a vertex in 

 and  if and only if the  corresponding to  and  have non-empty intersection. That is, there is a one-

to-one correspondence between and such that two sets in  have non-empty intersection if and only if their 

corresponding vertices in  are adjacent. Intersection graphs are vital from both theoretical and practical points 

of view.An interval graph is the intersection graph of a family of intervals of the real line, called an interval 

model. Let and  be two distinct parallel lines. A permutation graph is the intersection graph of a family of 

line segments whose endpoints lie on two parallel lines and . A trapezoid graph is the intersection graph of 

a family of trapezoids , such that is on and on .A point-interval graph (or graph) is the intersection 

graph of a family of triangles , such that  is on and  is on .Figure 1 illustrates aPI graphwhere  is 

represented by the top line and  by the bottom line. Point-interval graphs generalize both permutation and 

interval graphs and lie between permutation and trapezoid graphs.  

  

 
(a) (b)    

Figure 1: (a) A simple-triangle graph of G. (b) An intersection representation of G.  

In fact, an acyclic binary relation  is called a linear-interval order if for each  there exists a triangle  

such that  if and only if   lies completely to the left of  .   

In fact, the ordering of the apices of the triangles gives the linear order , and the bases of the triangles give 

an interval representation of the interval order . Let  be a family of geometric objects on  and let and  be 

two horizontal lines in the -plane with above . Generally speaking, a binary relation on a set  is -order 

if for each element , there is a geometric object  between  and  so that for any two elements , 

we have  in   if and only if   lies completely to the left of  . The set  is called a  

representation of  

 . Linear-interval orders have a triangle representation and Linear-semiorders have a unit triangle 

representation.   
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We say that  is a -linear-interval realizerof , if  is an interval realizer of  with  elements and 

precisely  of them are non-linear. In this case we say that -realize . We define  if  is 

lexicographically smaller than or equal to . A linear-interval dimension of an order , denoted by , 

is the lexicographically smallest ordered pair  such that there exists a -linear-interval realizer of  (see 

[2, Page . Similarly, we define the notion -linear-semiorder realizer of .   

3 Main result   

Szpilrajn's extension theorem shows that any irreflexive and transitive binary relation has an irreflexive, 

transitive and total (strict linear order) extension (see Szpilrajn [21]). A general result of Szpilrajns extension 

theorem is the following corollary.  

Corollary 3.1. A binary relation on a set  has a strict linear order extension if and only if  is an acyclic 

binary relation.  

Proof. To prove the necessity of the corollary, we assume that  is acyclic. Then,  is irreflexive and transitive. 

By Szpilrajns extension theorem  has a strict linear order extension . Since  we have that  is a strict 

linear order extension of . To prove the sufficiency, let us assume that  has a strict linear order extension  

.Then,  is acyclic. Indeed, suppose to the contrary that there exist such that and . It follows that 

, a contradiction to the irreflexivity of . The last conclusion completes the proof.  

Szpilrajn's result remains true if asymmetry is replaced with reflexivity and antisymmetric (see [1, Page 64], 

[9]), that is, every reflexive, transitive and antisymmetric binary relation has a linear order extension. We 

generalize this result as follows:  

Definition 3.1. A binary relation  on a set  is transitively antisymmetric if and only if  is antisymmetric.  

Proposition 3.2. A binary relation   on a set   has a linear order extension if and only if  istransitively 

antisymmetric.  

Proof. To prove the necessity of the proposition, we assume that  is transitively antisymmetric. Then,  is 

transitive and antisymmetric. Then, by Arrow [1, Page 64] and Hansson [9], has a linear order extension. 

Therefore,  has a linear order extension. To prove the sufficiency, suppose that  has a linear order extension.  

If  is not transitively antisymmetric, then there are  such that  and  . But then, 

and  which is impossible by the antisymmetry of .The last contradiction shows that  is  

transitively antisymmetric.  

To continue the study on the interval order dimension let us make the following assumption.  

Negative interval order assumption. Let a binary relation on  be given. Then, there exists  such 

that and hold. The set  

 and   

is called the negative interval order assumption set with respect to .  

Negative semiorder assumption. Let a binary relation on  be given. Then, there exists  such that 

 
 and  hold.  

Remark 3.3. If a binary relation  is assumed to satisfy the negative interval order assumption generalizes the 

rule and if it is assumed to satisfy the semiorder assumption is equivalent to fulfil the  rule. In this 

paper, we  

use the first notation which is more convenient for presentation of proofs.  

Lemma 3.4. Let be an acyclic binary relation on a set , which does not satisfy the negative interval order 

assumption. Then, is an interval order extension of (not necessarily strict linear order).  

Proof. By definition,  and is transitive. Since  is acyclic, we also seethat   is irreflexive. To 

complete the proof, weonly need to verify that satisfies the Russell-Wiener axiom. In fact, since does not 

satisfy thassumption of the negative interval order, we are led to conclude that for all , which satisfy



 American International Journal of Computer Science and Information Technology Vol 7(4) 

 

pg. 16 

and ,we have . Let now such that and .Then, there exist natural 

numbers and alternatives such that  

 and .   

But then, and imply that .It follows that .Hence, is an interval order extension 

of .  

Theorem 3.5.A binary relation on a set  has an interval order extension (not necessarily a strict linear order) 

if and only if is acyclic.  

Proof. Let us prove the necessity of the theorem. We assume that  is an acyclic binary relation defined in a 

set . If  is an interval order(if such that , then , then there is nothing to 

prove.Otherwise,  . That is, there exists  such that  and  .We put 

 such that   and .  

Clearly, is irreflexive and .To verify that is acyclic, take any and suppose that . Then, there 

exists a natural number  and alternatives such that  

.  

Since is acyclic, there is at least one such that with . Let be the first 

occurrence of and let be the last occurrence of . Clearly, for all , if ,then  

. Then,  

.  

It follows that  which jointly with  and  implies that  , causing an absurdity. 

Therefore, is acyclic. On the other hand, if does not satisfies the negative interval order assumption, then 

Lemma 3.4 implies that  is an interval order extension of  , which ends the proof of the necessity of the 

theorem. Otherwise, we proceed by assuming that  satisfies the negative interval order assumption. Now, let 

us is an acyclic extension of  which satisfies the negative interval order assumption}.  

We have , so this class is not nonempty. Let be a chain in and let .Then, .  

To prove it, we first show that is acyclic (resp. irreflexive). Take  (resp. for some . Then, 

since  is a chain, there exists an such that  (resp. ).This is impossible due to the 

acyclicity (irreflexivity) of  . Therefore,   is irreflexive and acyclic. On the other hand, we assume that

satisfies the negative interval order assumption, because otherwise Lemma 3.4 implies that is an extension of 

the interval order of , which ends the proof of the necessity of the theorem. Since we have that . 

Therefore, any chain in  has an upper bound in  (with respect to set inclusion). By Zorn's lemma, there is a 

maximal element in . We prove that  is an interval order extension of . Clearly,  is an irreflexive and 

transitive extension of . It remains to prove that  satisfies the Russell-Wiener axiom.   

We proceed by way of contradiction. Suppose there are   such that  and 

. Then,  is an acyclic extension of  which satisfies the negative interval order assumption, a 

contradiction to the maximal character of . Clearly, in any case of proof, the extension of the interval  is not 

required to be of linear order. Thus, the last contradiction completes the necessity of the theorem.   

To prove the sufficiency, let us assume that  has a not necessarily linear interval order extension .Then,  is 

acyclic. Indeed, suppose to the contrary that there exist , a natural number  and alternatives  

such that  

.   

Since   is transitive and  ,we have , a contradiction to irreflexivity of . The last conclusion 

completes the proof.    

Corollary 3.6. A binary relation  on a set  has a strong interval order extension ((not necessarily a linear 

order) if and only if  is transitively antisymmetric.  
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Proof. To prove the necessity of the corollary, we assume that  is transitively antisymmetric. Then,  is 

acyclic. By Theorem 3.5,  has an interval order extension  . Then, we have  

.  

Therefore,  is a strong interval order extension of . To prove the sufficiency, let us assume 

that  has a strong interval order extension .Suppose on the contrary, that there are  such that , 

 and . It follows that  and  which is impossible by the asymmetry of .  

The last contradiction completes the proof.   

Theorem 3.7. A binary relation  in a set  is a linear interval order if and only if  is acyclic.  

Proof. To prove the necessity of the theorem, let us suppose that  is an acyclic binary relation defined on a 

set .  

By Theorem 3.5 there exists an interval order extension  of  (  is not necessarily a strict linear order). Then, 

which implies that  is an interval order extension of . We put  

.  

Since  is acyclic and  is irreflexive, we have  is irreflexive. If , then . By the Szpilrajn theorem, 

 has a strict linear-order extension . It follows that  which implies that  is a linear-interval order. 

Now suppose  . We now prove that  is acyclic and thus is an acyclic extension 

of . Indeed, suppose to the contrary that there are alternatives  such that  

  .  

Since  is acyclic, there is at least one such that . Let  be the first occurrence of 

 and let  be the last occurrence of . Then,  

   .  

It follows that , a contradiction to .  

Suppose that  denotes the set of acyclic extensions of  such that  if and only if  

. Since  we have that . Let  be a chain in , and let . We prove that  

. To prove that  is acyclic suppose to the contrary that there exists  such that  

.  

Since is a chain, there exists such that  

,  

contradicting the acyclicity of . On the other hand, it is easy to check that implies .  

By Zorn's lemma  possesses an element, say , that is maximal with respect to set inclusion. We have two 

cases to consider: is total or not. If  is total, then  is a strict linear order extension of . Then, . 

Indeed, since , one needs only to prove that . Let to the contrary be and 

. The which implies that , a contrsdiction to asymmetry of   (irreflexive 

and transitive). Therefore,  

.If is not total, then there exists such that and . It follows that and  

 . But then,  and  , because otherwise   or   which implies that 

which is impossible. Since  and transitive, by the Szpilrajn theorem there exists a strict 

linear  

order extension  of  . Since   we conclude that  .The last conclusion shows that   is a 

linear-interval binary relation.The converse is similar to the proof of the converse of Theorem 3.5.  

Theorem 3.8. A binary relation  on a set  has a semiorder extension if and only if  is acyclic. Proof. Let  

be an acyclic binary relation on . By Theorem 3.5 has an interval order extension of . Put  

 there exist   such that  

  and . 

Clearly,  is irreflexive. We prove that  is transitive. Indeed, let  such that and .  
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Then, we have four cases to consider:  

Case . and .Then, .  

Case .  and .Therefore, and  there  exists such  that 

and . From and we have that . If we have nothing  

toprove. We suppose that . Then, from , and we conclude .  

Case  .  and  .In this case, we have  and there exists  such that 

and . Since and we conclude that which jointly to  

implies that .  

Case  .  and  . In this case, there are  such that  and

 ,  and  .If  , then we have nothing to prove. Suppose that  .If

, then from  and we conclude that  . Otherwise, if then 

we have two subcases to consider when or not.If , then from  and we 

have . On the other hand, if ,then implies that  

which jointly to implies that which is impossible. Therefore, in all possible cases which 

implies that is transitive.  

To prove that  is an interval order we have four cases to consider.  

Case . and . Since  is an interval order, in this case It is clear that  

.  

Case  . and . In this case, there are such that and

. Then, from and we conclude that .If ,then we  

have nothing to prove.If , then from and we have that .  

Case . and .In this case, we have  and there exists such that 

, and .If , then we have nothing to prove. Let .  

If  ,then  implies  . Otherwise,   which jointly to 

implythat , a contradiction. Therefore, .  

Case  . and . In this case, there are such that  

,  and and .If ,  then  we  have  nothing 

 to prove.Let  . If  , then from  ,  and  we conclude  . If

 
,then we have two subcases to consider: and .If , then from  

and we conclude that . If , then from and we conclude that . 

But then,  and implies that ,anabsurdity. Hence,  

. Therefore, is an interval order.If  does not satisy the negative semiorder assumption, then is a  

semiorderextension of  and the proof is over. Otherwise, satisfies the negative semiorder assumption. Now, 

let is an interval order extension of  which satisfies the negative semiorder assumption}.  

We have , so this class is nonempty. Let  be the family of chains in  is a 

chain in   such that   does not satisfy the negative semiorder assumption, then   is a semiorder 

extension of . Otherwise, for each  holds. By Zorn's lemma, there is a maximal element in . 

We prove that  is a semiorder extension of  . Indeed, suppose to the 

contrary that  is not a semiorder. Then, thereexist

. But then, the relation  

 there exist  such that  

   and belongs to  , a contradiction to the maximal character of  . 

Therefore,  is a semiorder extension of . The converse is evident.   

The following theorem is proved in a similar way to the proof of Theorem 3.7.   



 American International Journal of Computer Science and Information Technology Vol 7(4) 

 

pg. 19 

Theorem 3.9. A binary relation  on a set is a linear-semiorder if and only if  is acyclic.  

4 Hybrid order dimension   

Today, dimension theory is a strong advancement in graph theory and computer science. This is documented 

in the recent book by Trotter [25], which provides a comprehensive survey.   

The notion of dimension of a poset  was introduced in a seminal paper by Dushnik and Miller [3] as the 

least  such that there are  linear extensions of  whose intersection is . Equivalently, the dimension of  is 

the dimension of the Euclidean space  in which  can be embedded in such a way that  if and only 

if the point of  is below the point of with respect to component wise order (see Ore [15]). In a more general 

context, we often have a class  of objects, e.g., acyclic binary relations, graphs, digraphs, specific kinds of 

them, etc.- and a subclass  of  such that every  is either equivalent to the intersection of a number of 

 or can be embedded into a product  with  and  being a cardinal number. Then it is natural to 

regard the necessary number of  as a measure of complexity of , called the dimension of  with respect to  

and . The following theorem is a generalized result to that of Dushnik and Miller, and it is a key result for 

the study of the interval order dimension.   

Theorem 4.1. Let  be an abstract system. Then,  has as a realizer the set of interval order extensions of  

if and only if  is acyclic.  

Proof. To prove the necessity, let  be an acyclic binary relation on  and let  be the set of all interval order 

extensions of . By Theorem 3.5, the family of such extensions is non-empty. We show that . Clearly,  

. Therefore, we have only to show that . Suppose to the contrary that there exists a pair 

but . We first show that . Indeed, if we suppose, for the sake of contradiction, that 

, then we have . This contradicts the fact that  is asymmetric (irreflexive and transitive). 

Therefore,  are non-comparable with respect to . Put  

   
It is easy to check that  is acyclic . By Theorem 3.5,  has an interval order extension . Therefore, 

 has an interval order extension  such that , a contradiction to the asymmetry of 

. The last contradiction proves that .  

To prove the sufficiency of the theorem, let , where  is a family of interval order extensions of .  

Then,  is acyclic. Indeed, suppose to the contrary that there are alternatives such that  

.   

Since  is a transitive extension of , we have , a contradiction to irreflexivity of . Therefore,  is acyclic. 

The last conclusion completes the proof.  

The following corollary is a consequence of Theorem 4.1.   

Corollary 4.2. Let  be an abstract system. Then,  has as realizer the set of strong interval order extensions 

of  if and only if  is reflexive and transitively antisymmetric.  

Proof. To prove the necessity, let   be reflexive and transitively antisymmetric. Then,   is acyclic. By 

Theorem  

4.1, we have that , where  is an interval order. Therefore,  where  is a strong 

interval order. Conversely, suppose that  has as realizer the set  of strong interval order extensions of . If  

, then  is an interval order. If we suppose that  is not transitively antisymmetric, then we conclude 

that  is not asymmetric, which is a contradiction. Therefore,  is transitively antisymmetric. On the other 

hand, since , we see that for all there is . Thus, here are alternatives  

such that  

.  

Since  is transitively antisymmetric, we conclude that  which implies that . Hence, 

 is reflexive.  
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Moreover, if  is transitive, then as immediate consequences of Theorem 4.1 and Corollary 4.2 we have the 

following results.  

Corollary 4.3. A binary relation  has as realizer the set of its interval order extensions if and only if  is a 

strict partial order.   

Corollary 4.4. A binary relation  has as realizer the set of its strong interval order extensions if and only if  

is a partial order.  

The following result is a generalization of the theorem of Dushnik and Miller [3].   

Theorem 4.5. Let be an abstract system. Then,  has as realizer the set of strict linear order extensions of 

 if and only if  is acyclic.  

Proof. Let  be an acyclic binary relation on . Then,  is a poset. By ([3, Theorem 2.32] we have that the 

family  of strict linear order extensions of  is a realizer of . That is, . Since and imply  

, we have that the family of strict linear order extension of coincides with the family of strict linear  

order extension of .  

Conversely, suppose that  has as realizer the set of strict linear order extensions of . Then, .Since 

 is irreflexive, we conclude that  is acyclic.   

By analogy to the proof of Corollary 4.2 of Theorem 4.1, we can prove the following corollary from Theorem 

4.5. Corollary 4.6. Let be an abstract system. Then,  has as realizer the set of linear order extensions of 

 if and only if  is reflexive and transitively antisymmetric.  

Moreover, if  is transitive, then as immediate consequences of Theorem 4.5 and Corollary 4.6 we have the 

following results.   

Corollary 4.7. Let  be an abstract system. Then,  has as realizer the set of strict linear order extensions 

of  if and only if  is transitive and asymmetric.  

Corollary 4.8. Let  be an abstract system. Then,  has as realizer the set of linear order extensions of  if 

and only if  is reflexive, thansitive, and antisymmetric.  

The following two theorems are proved in a similarway to the proof of Theorem 4.1.   

Theorem 4.9. Let  be an abstract system. Then,  has as realizer the set of linear-interval order extensions 

of  if and only if  is acyclic.   

Theorem 4.10. Let  be an abstract system. Then,  has as realizer the set of linear-semiorder extensions 

of if and only if  is acyclic.  

As we mentioned above, Ore [15] defined order dimension of a poset  as the least cardinal  (see also 

Hiraguchi  ) such that there is an order preserving embedding of  into a direct product  

of  linear orders ,where  is defined by  if and only if

  holds for all .  

On the other hand, Milner and Pouzet [14] proved that the dimension of a poset  is equal to the least cardinal 

 such that there is an order preserving embedding of   into a strict direct product 

 of   strict linear orders  , where   is defined by   if 

and only if   holds for all  .    

In order to give general results concerning those of (interval) order dimension, we extend the notions of order 

preserving embedding, componentwise order and (strict) direct product of a partial order to arbitrary binary 

relations.  

In the following, for the sake of maintaining uniformity of notations, for any abstract system we denote 

and . Clearly, if  is acyclic, then and .  

Definition 4.1. A mapping from an abstract system   to an abstract system   is called an 

dominancepreserving embedding if it respects the dominance relation, that is, all  are mapped to  

such that  if and only if . Let  be a cardinal number and let be a family of abstract 
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systems. The strict componentwise dominance relation of  is a binary relation  on the Cartesian product 

 such that given , we have  if and only if   for all .   

The componentwise dominance relation of  is a binary relation  on the cartesian product  such that 

given , we have  

 if and only if   for each .   

The strict direct product of a family of abstract systems, denoted by , is the  

Cartesian product equipped with the strict componentwise dominance relation .In this case, we write 

where . The direct product of a family of abstract systems,  

denoted by ,is the Cartesian product equipped with the componentwise dominance relation

.In this case, we write where .  

In case of (strict) partial orders, the notions of dominance-preserving embedding, componentwise dominance 

relation and (strict) direct product of an abstract system coincide with the notions of order-preserving 

embedding, componentwise order and (strict) direct product of linearly ordered sets, respectively.  

We now extend the notion of order dimension to study the problem of (interval) order dimension in a general 

form.  

Definition 4.2. Let   be an abstract system. The (interval order dimension) order dimension 

 of  is the least cardinal such that there are (interval order) strict linear order extensions 

of  whose intersection is the transitive closure of .  

Note that this definition coincides with the classical one when is transitive.   

The following theorem generalizes the well-known results of Hiraguchi [10], Ore [15] and Milner and Pouzet 

[14]. Theorem 4.11. Let  be an abstract system where  is acyclic. Then the following statements are 

equivalent.  

(a) The order dimension of  is the least cardinal  such that  is the intersection of strict linear orders.  

(b) The order dimension of  is the least cardinal  such that there is a dominance-preserving embedding 

of into a strict direct product of  strict linear orders.  

(c) The order dimension of  is the least cardinal  such that there is a dominance-preserving embedding 

of into a direct product of  linear orders.  

Proof.Step . Suppose that  has order dimension . Therefore,  where are 

strict linear orders on . Let . We define the map  

by  where  for all . Since the ordering  is defined on  by  if and only 

if   holds for all ,  

we have  

.  

Step  . To prove this fact, it suffices to show that the strict direct product 

 of the strict linear orders  can be embedded into a direct product of linear orders. Indeed, let for  

each ,  denote the ordering on  defined by  

ifandonlyifeither where  

.  

Clearly, is reflexive , antisymmetric and transitive on . We prove that  is also total on . 

that   is false. Since Suppose 

 is total, it follows 

that  
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In all cases   and   we have  . It follows that   is a linear order extension of  . We prove that 

   

is embedded in the direct product  , where 

where  for all  . We claim that  is embedded in the direct product  by the mapping

 where  forall  . Indeed, if  , then  and so   for all  .Therefore,  . 

Conversely, if , then  and  for all .Therefore, either  or for all . If

,then there is some such that and . On the other hand, for all implies that

 and thus  .Since  is transitive,  and  imply that  , a contradiction to irreflexivity of

.Therefore, for all . It follows that .The last conclusion shows that  

.  

  

Step  .Suppose that  . By definition,   is the least cardinal such that there is a 

dominance-preserving embedding  of  into a direct product , where each  is 

a linear order,  and  is defined by  if and only if  holds for all 

.  

Then, by supposition we have  

.  

If , we write . Then, for each define a linear order  on by  

if and only if either and hold or  and  , where  

  

We prove that  

.  

Indeed, let , then and thus for all , we have and . Therefore, for all

we have . Hence,  

.  

Conversely,  let for  all .  Then,  either  and  or  and

,where hold.Supposethat forsome  

 .Then,  ,where  . Since  and  we have  .By the 

antisymmetry of  we have which is impossible by the definition of . The last contradiction shows 

that for all  we have  and  . It follows that  

  
The last conclusion implies that,  

  

Therefore,  

.  

Since  is acyclic, the last implication implies that , where for all  is a strict linear order.  

Because of the three steps above we conclude that , and the proof is complete.  

As an immediate consequence of Theorem 4.11, we have the following corollary which is the main result of 

Corollary 4.12. Let  be a poset. Then the following statements are equivalent.  

(a) The order dimension of  is the least cardinal  such that  is the intersection of strict linear orders.  

(b) The order dimension of   is the least cardinal   such that there is an embedding of   into a 

strictdirect product of strict linear orders.  
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(c) The order dimension of   is the least cardinal   such that there is an embedding of   into a 

directproduct of  linear orders.  

An alternative definition of the interval order  defined in  can be made by assigning to each element  an 

open interval of the real line, such that in  if and only if . Such a collection of intervals 

is called an interval representationof . Let be a cardinal number and let  be a family of interval 

orders. We denote by  the interval order representation of each interval order  .Let   be an interval 

corresponding to  in the representation of . With  we associate the box . Each of these 

boxes is uniquely determined by its upper extreme corner  and its lower extreme corner . 

Such an assignment is called a box embeddingof . For the interval order dimension, the box embedding plays 

the role of the point embedding in   introduced by Ore. The projections of a box embedding on each 

coordinate yields an interval order (see [5]).  

To approach the interval orders analogue of the Hiraguchi [10], Ore [15] and Milner and Pouzet [14] results 

for posets, in a first step the concepts of direct product and strict direct product have to be generalized from 

linear orders to interval orders on . The direct product of a family  of strong interval orders 

is the Cartesian product  equipped with the ordering  defined by  

if and only if either  holds for all .  

The strict direct product of a family   of interval orders is the Cartesian product  

equipped with the ordering  defined by  if and only if   holds for all  .   

Definition 4.3. Let  be an abstract system. (i)We call , the least cardinal  such that there is a 

box embedding of  into a direct product of  strong interval orders. (ii) We call  the least cardinal  

such that there is a box embedding of  into a direct product of interval orders.   

Theorem 4.13. Let   be an abstract system where   is acyclic. Then the following statements are 

equivalent.  

(a) The interval order dimension of  is the least cardinal  such that  is the intersection of  interval orders. 

(b) The interval order dimension of  is the least cardinal  such that there is a box embedding of  into a 

strictdirect product of  interval orders.  

(c) The interval order dimension of  is the least cardinal  such that there is a box embedding of  into a 

direct product of  strong interval orders.  

Proof.Step  . Suppose that   has interval order dimension  . Therefore,  

where  are interval orders on .Let , where  be an interval representation of .Let also 

and . We define the map by .  

The ordering is defined by  if and only if   holds for all  .  

Therefore,  

.  

Step . To show this fact, it suffices to show that the strict direct product  

 can be box embedded into a direct product of strong interval orders. Indeed, let ,  

where for each  be an interval representation of .For each , define the ordering  on  by 

if and only if either (i) or (ii) and  

where   or  .  

Clearly, for all  is an extension of . Since the reals satisfy the law of trichotomy we conclude that for 

each   is a strong interval order. We show that   is box embedded in the direct product 

 
,where , where for all . By definition, the  

ordering  is defined  if and only if  holds for all  .   
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Let be the mapping Clearly, there holds the following implication:  

.  

Conversely, if ,then for all . Therefore, for all   

where   

Suppose that  and  for some  . Then, there is some  such that  . On the other hand, since

,  we  have  that . But then, implies  

which is impossible. The last contradiction shows that for all there holds , which implies that

. Therefore,  

.  

Step  . Suppose that  . Then,   is the least cardinal such that there is a box 

embedding  of  into a direct product  of strong interval orders  .By 

definition, .On the other hand, if for all is an interval representationof , then the 

ordering is defined by  if and only if   holds for all .   

Then, by definition, we have  

.  

If ,then for each we define the ordering on by: ifand only if either or

and , where .  

Clearly,each is a strong interval order extension of . We prove that  

 ( .  

Indeed, let  . Then,   and for any  there holds  andso  for all  .Conversely, let

for all . Then, either  

(   

or  

) , where   or   

Suppose that and for some . Then, where has the meaning above mentioned. On the other 

hand, implies that .Since we have that .It follows that  

 which is impossible. The last 

conclusion shows that for all we have that the 

case ( ) holds. Therefore,  

  
Therefore, by combining the previous implications, we get  

.  

Finally, by , we have that  

.  

Since  is acyclic, the last implication implies that , where for all is an interval order.  

Because of the three steps above we conclude that , and the proof is complete.  

The following corollary is an immediate consequence of Theorem 4.13.  

Corollary 4.14.Let  be a poset. Then the following statements are equivalent.  

(a) The interval order dimension of  is the least cardinal  such that  is the intersection of  interval orders. 

(b) The interval order dimension of  is the least cardinal  such that there is a box embedding of  into a 

strict direct product of interval orders.  

(c) The interval order dimension of  is the least cardinal  such that there is a box embedding of  into a 

directproduct of  strong interval orders.  
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Let  be a triangle . Denote and . Let and  be two distinct parallel lines. A point-interval 

graph orPI graph is the intersection graph of a family of triangles , such that is on and is on .Except 

for the definition we gave in the introduction, the linear-interval order can also be defined as follows: An 

acyclic binary relation  is a linear-interval order if there is such a triangle for each element , and 

if and only if lies completely to the left of . In fact, the ordering of the apices  of the triangles gives 

the linear order L, and the bases  of the triangles give an interval representation of the interval 

order  for which . As usual, the left and right extreme points of an interval  are denoted by and

,respectively. When , we say that  is trivial. Let  be the cartesian product of  many copies of . 

A linear-interval point  is the set  where for all (notice that in this definition it is allowed that  

be trivial). With  we associate the box . This assignment is called a linear interval box 

embeddingof .  

For the linear-interval order dimension, the linear-interval box embedding plays the role of the point 

embedding into  introduced by Ore. The projections of a linear-interval box embedding on each coordinate 

yield a linear order or an interval order.  

To approach the linear-interval orders analogue of the Hiraguchi [10], Ore [15] and Milner and Pouzet [14] 

results for posets, in a first step the concepts of direct product and strict direct product must be generalized 

from linear orders and interval orders to linear-interval orders on  . The direct product of a family 

 of strong linear-interval orders is the Cartesian product   equipped with the ordering 

 defined by  if and only if either  or  holds for all .   

The strict direct product of a family  of linear-interval orders is the Cartesian product  

equipped with the ordering  defined by  if and only if  holds for all .  

Definition 4.4. Let be an abstract system. (i) We call the least cardinal such that there is a 

linear-interval box embedding of   into a direct product of  strong linear-interval orders. (ii) We call 

, the least cardinal  such that there is a linear-interval box embedding of into a direct product of  

linearinterval orders.  

The following theorem generalizes Theorem 4.11 and Theorem 4.13. The prove is omitted since it follows the 

same scheme.  

Theorem 4.15. Let   be an abstract system where   is acyclic. Then the following statements are 

equivalent.  

(a) The -linear-interval order dimension of  is the least cardinal  such that  is the intersection of  

linearinterval orders which  of them are not linear orders.  

(b) The -linear-interval order dimension of  is the least cardinal  such that there is a linear-interval 

embeddingof  into a strict direct product of  linear interval orders, of which  are not strict linear orders. 

(c) The  -linear-interval order dimension of   is the least cardinal   such that there is a strong 

linearintervalembedding of into a direct product of  strong linear-interval orders which  of them are not 

linear orders.  

The following corollary is an immediate consequence of Theorem 4.17.  

Corollary 4.16. Let  be a poset. Then the following statements are equivalent.  

(a) The -linear-interval order dimension of  is the least cardinal  such that  is the intersection of  

linearinterval orders which  of them are not linear orders.   

(b) The -linear-interval order dimension of  is the least cardinal  such that there is a linear-interval 

embeddingof  into a strict direct product of  linear-interval orders which  of them are not strict linear 

orders.  

(c) The  -linear-interval order dimension of   is the least cardinal   such that there is a strong 

linearintervalembedding of  into a direct product of  strong linear-interval orders which  of them are not 

linear orders.  
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Using the previous approach for linear-interval orders, we can define in a similar way the notion of (strong) 

linearsemiorder box embedding. The only difference is that a semiorder is a poset whose elements correspond 

to unit length intervals.  

Definition 4.5. Let be an abstract system. (i) We call the least cardinal  such that there is a 

linear-semiorder box embedding of  into a direct product of strong linear-semiorders. (ii) We call 

, the least cardinal  such that there is a linear-semiorder box embedding of  into a direct product of  

linearsemiorders.  

The following two theorems are proved in a similar way to the proof of Theorems 4.11 and 4.13, by using 

Theorem 3.8, Theorem 3.9 and Definition 4.5.  

Theorem 4.17. Let 𝔓=(𝑋,𝑅) be an abstract system where 𝑅 is acyclic. Then the following statements are 

equivalent.  

(a) The (𝜆,)-linear-semiorder dimension of 𝔓 is the least cardinal 𝜆 such that 𝑅  is the intersection of 𝜆 

linearsemiorders which𝜇 of them are not linear orders.  

(b) The (𝜆,𝜇)-linear-semiorder dimension of 𝔓 is the least cardinal 𝜆 such that there is a linear-semiorder 

embeddingof(𝑋,𝑅 ) into a strict direct product of𝜆 linear-semiorders which 𝜇 of them are not strict linear 

orders. (c) The (𝜆,𝜇)-linear-semiorder dimension of 𝔓 is the least cardinal 𝜆 such that there is a strong 

linearsemiorderembedding of (𝑋,𝑅 ) into a direct product of 𝜆 strong linear-semiorders which 𝜇 of them are 

not linear orders.  

The following corollary is an immediate consequence of Theorem 4.17.  

Corollary 4.18. Let 𝔊=(𝑋,≺) be a poset. Then the following statements are equivalent.  

(a) The (𝜆,)-linear-semiorder dimension of 𝔊 is the least cardinal 𝜆 such that ≺ is the intersection 

of𝜆linearsemiorders which 𝜇 of them are not linear orders.  

(b) The (𝜆,𝜇)-linear-semiorder dimension of ≺ is the least cardinal 𝜆 such that there is a linear-semiorder 

embeddingof(𝑋,≺) into a strict direct product of 𝜆 linear-semiorders which𝜇 of them are not strict linear orders.  

(c) The (𝜆,𝜇)-linear-interval order dimension of 𝔊 is the least cardinal 𝜆 such that there is a strong 

linearsemiorderembedding of (𝑋,≺) into a direct product of 𝜆 strong linear-interval orders which 𝜇 of them 

are not linear orders.  
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