
 American International Journal of Computer Science and 

Information Technology  
Volume.8, Number 3;July-September, 2023; 

ISSN: 2837-388X| Impact Factor: 

 https://zapjournals.com/Journals/index.php/aijcsit 

Published By: Zendo Academic Publishing 

 

 

pg. 29 

SMART BUILDING MANAGEMENT THROUGH TEMPERATURE MONITORING 

WITH MATPLOTLIB 

  

 

 

Dr. Jennifer Marie Rodriguez1   Prof. Michael David Thompson2  and Dr. Michael James 

Anderson3 

 

Article Info  Abstract 

Keywords: Internet of Things 

(IoT), Wireless Sensor 

Network (WSN), Smart 

Building Management, 

Machine Learning, 

Environmental Monitoring 

 

 The Internet of Things (IoT) has ushered in a transformative era, 

revolutionizing various aspects of our daily lives. A pivotal 

component within this landscape is the Wireless Sensor Network 

(WSN), which forms the bedrock of IoT infrastructure. WSN 

applications span a spectrum of domains, from smart cities and 

environmental monitoring to healthcare and precision agriculture. 

For instance, Monteiro et al. (2018) introduced a predictive model for 

indoor temperature within an IoT framework, leveraging both 

internal and external sensors for accurate ambient temperature 

forecasts. Djenouri et al. (2019) conducted an extensive survey, 

delving into the cutting-edge research encompassing machine 

learning techniques and the technical facets of smart building 

management systems. In a complementary endeavor, Dayarathna 

(2019) meticulously compared prominent IoT development 

platforms, such as Appcelerator, Amazon Web Services (AWS), 

Bosch, and IBM, among others. 
 

 

1. Introduction  

Internet of Things (IoT) and its applications are changing our daily lives in many fields, ranging from wearable 

smart gadgets to home appliances. Wireless sensor network (WSN) plays a very important role in the 

infrastructure of IoT. It has been applied to the fields of smart cities [Mitton et al., 2012], street light control 

[Sunehra et al., 2017], smart building management [Ghayvat et al., 2015; Liang et al., 2017; Minoli et al., 2017; 
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Zanella et al., 2014], environmental and air pollution monitoring [Nagaraj et al., 2017; Ray 2015], energy 

monitoring [Grosso et al., 2018; Liu et al., 2012; Ray 2016], health monitoring [Chauhan et al., 2016;  Garrido et 

al., 2019; Othman et al., 2014], and intelligence & precision agriculture [Calderón-Córdova et al., 2018; Davcev 

et al., 2018; Granda-Cantuña et al., 2018; Ma et al., 2018; Medeiros et al., 2018;   Nooriman et al., 2018; 

Onibonoje et al., 2017; Sriploy et al., 2018]. Monteiro et al. (2018) proposed a forecast model for indoor 

temperature prediction in an IoT scenario composed of a home appliance. It integrated information from own and 

external sensors and performed a forecast on the ambient temperature. A comprehensive study of the state-of-the-

art research on machine learning, architectural, technical aspects of the smart building management systems has 

been reviewed by Djenouri et al. (2019). Dayarathna (2019) further presented a detailed comparison of current 

general IoT development platforms which include Appcelerator, Amazon Web Services(AWS), Bosch, IBM, 

ParStream, ThingsWorx, Xively, and ThingsBoard. Data that is collected by wireless sensors on the "things" in 

IoT includes temperature, humidity, speed, position, force, or the density of some gases of the objects, vehicles, 

and the environment. Displaying the data in a more appealing and interactive way for the user is a challenge task 

for data scientist and data engineers. Data visualization is one of the most effective tools to interpret big data. It 

allows human being to better understand the nature of the dataset, as well as conveys the proper message to non-

technical viewer. A lot of data visualization tools for WSN have been developed in past years [Castillo et al., 

2008;  dAuriol et al., 2010; ElHakim et al., 2010; Parbat et al., 2010;  Ravichandran et al., 2016 ]. Here we briefly 

introduce some of the most popular data visualization tools used in the WSN field.   

The professional software like MOTE-VIEW [Tuton, 2005] provides many powerful functions for user but it is 

too sophisticated for a small scale WSN. SpyGlass [Buschmann et al., 2005] is very powerful and flexible in 

modular visualization application for WSN. It allows users to develop their own special visualization plug-ins 

which could be added in SpyGlass. However, it requires the user to fully understand the architecture of SpyGlass 

and its visualization components. Otherwise, there is no guaranty for the compatibility of user's plug-in 

component. NetTopo [Shu et al., 2008] is a platform independent, flexible WSN simulation and visualization tool. 

It also could be used as a test-bed for some devices such as camera and Bluetooth based wireless sensors, but it 

provides more functions on simulation than visualization. Octopus [Jurdak et al., 2011] is a modular visualization 

and control tool. It provides GUI to display the topology of WSN. It also provides live data plot for users. 

However, if users want to test their own node program, Octopus won't fully support it. Syafrudin et al. (2018) 

proposed a big data processing platform which utilizes Apache Kafka as a message queue, Apache Storm as a 

real-time processing engine, and MongoDB to store the sensor data for automotive manufacturing. Though the 

system is sufficiently efficient to monitor the manufacturing process, it is very costly. Thus, there is a need to 

develop a low cost, cross-platform, efficient implementation visual tool for nonprogramming engineers in order 

to display data collected by wireless sensors for real time applications.   

This paper introduces an efficient solution of data visualization scheme using Matplotlib in Python for WSN. The 

data collected by wireless sensors are transmitted via routers in WSN and then forwarded to the personal computer 

from the coordinator via serial port. Then, the data are animated visually in different real time plotting created by 

Matplotlib command based on their locations or MAC addresses. A record of data is created by SQLite database 

system simultaneously according to the corresponding MAC address of the sensor. The timestamp is added to the 

record at the same time. SQLite is a user-friendly database engine which is self-contained, server-less, 

zeroconfiguration and transactional. It is very fast and lightweight with the entire database stored in a single file, 

requiring no configuration and stores information in ordinary disk files. Comparing with other open source 

database like PostgreSQL and MySQL (which are suitable for complex operations), SQLite is a popular choice 
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as a database to support small to medium-sized websites. It is also used in a lot of applications as internal data 

storage. The Python standard library includes a module called "sqlite3" which is intended for working with this 

database. This module is a SQL interface compliant with the Database-Application Programming Interface (DB-

API) 2.0 specification (https://www.pythoncentral.io/introduction-to-sqlite-in-python/).   

  
Figure 1. A typical XBee wireless sensor network system.  

The XBee based wireless sensor network is composed of a coordinator and many routers as demonstrated in Fig. 

1. The role of the coordinator is to get all data forwarded by routers of the WSN and send them to the computer 

via serial port. The router of an XBee based WSN is in charge of forwarding the data collected by the sensors on 

the end node to other routers or to the coordinator via a mesh network.  In addition, all XBee modules in the same 

WSN should contain the same Personal Area Network (PAN) ID number. Detailed configuration steps of XBee 

coordinator and router could be found in Faludi's work [Faludi, 2010].    

Digi International provides free application named XCTU (XBee Configuration and Test Utility) to program, 

configure, troubleshoot, and manage the XBee based mesh network. The XCTU software can be downloaded 

from the Digi's website (http://www.digi.com/products /wireless-wired-embedded-solutions/ZigBee-rf-

modules/xctu). The total cost of the proposed system is in the range of hundreds of dollars, including a personal 

computer, XBee routers/coordinator, and temperature sensors.   

The remainder of this paper is organized as follows: Section 2 describes the topology of wireless sensor network 

and the configurations of XBee modules. Section 3 presented the algorithm and flowchart of data acquisition and 

conversion from wireless sensors. Section 4 provides the usage of Matplotlib plotting functions in Python. The 

SQLite database system recording methods are described in Section 5. The experimental results are presented in 

Section 6. The conclusion and future work are provided in Section 7.  

2. Topology of the WSN and XBee Module Configuration  

2.1. The wireless sensor network topology  

To display the topology of our XBee based WSN, we use the XCTU’s Network function to discover and visualize 

the topology. There is a ―Network working mode‖ button shown on the top of XCTU user interface. When this 

button is clicked, XCTU scans and displays the logical connections and link quality of the entire topology of the 

WSN as shown below.  

End node   Coordinator   Router   
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Figure 2. An XBee based WSN topology.  

Fig. 2 shows the topology of our WSN detected by XCTU. The router is represented by letter 'R' in blue color and 

the coordinator is represented by letter 'C' in red color in the XBee icons.   

To examine the detailed connection information for a specific XBee module, we click any XBee icon in XCTU 

network window, a connection table would pop-up and display all of the connections with that XBee module. 

There are two numbers that indicate the packets sending and receiving between two XBee modules for each link. 

If the number is 255/255, it represents that all packets sending to another module get all responses, i.e., the link 

is health. It will be highlighted in green color. On the other hand, if the number is 255/?, it means that the outgoing 

255 packets don't get response and the link is down. So the link between those two modules is not health. We will 

label the color of the link dim grey.  

2.2. XBee module configuration  

To configure the XBee module as a router, firstly, we mount the XBee module on an adapter called XBee explorer 

board. Developers can obtain the XBee explorer board from the Sparkfun Electronic Inc. or Adafruit Inc. 

Secondly, we attach a mini USB cable from this adapter and connect it to a PC. There is an onboard FT231X 

USB-toSerial converter that translates data between XBee and the PC.  Finally, we start the XCTU which will 

automatically detect the XBee module connected via USB port. In our XBee router, the value of pin DIO0 (Digital 

Input Output port 0) is configured as the input port of ADC (Analogue Digital Converter) which has a value of 2.   

To configure the XBee module as a coordinator, the XBee module has been set to API (Application Programming 

Interface) mode and the PAN ID of the coordinator must have the same number with the XBee routers in the 
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WSN. In our WSN system, the pin of DIO0 for the XBee coordinator is configured as a digital input port, which 

has a value of 3.  All XBee modules on a WSN must have the same PAN ID number. Otherwise they could not 

be able to communicate with each other.  In our WSN system, the PAN ID is configured as 1 for the simplicity of 

demonstration purpose. More details on XBee module configuration could be found in our research paper [Wei 

et al., 2017].  

3. Data Acquisition and Conversion  

In order to obtain data from wireless sensor via XBee modules in WSN, our system need import Python packages 

such as XBee, ZigBee, and serial packages before we start collecting data from sensors. For XBee modules, the 

baud rate is configured as 9600 bit/s. In order to save the data collected by different XBee modules, we create 

several lists as global variables that will be valid for the whole program.  The database named "MyWSNData.db" 

is created by the command conn = sqlite3.connect("MyWSNData.db") and curs = conn.cursor().  

The command   

ser = serial.Serial(SERIALPORT  BAUDRATE) xbee = ZigBee(ser)   

 will communicate with XBee modules via serial ports.  

After the correct serial port is successfully detected, our system will start to read the data from the  

corresponding serial port. The data of wireless sensors will be read and saved in the variable   

responseData = xbee.wait_read_frame().  

The data in XBee data frame is a dictionary which includes the key values, such as "id", "source address long", 

"source address", and "sample values" as indicated below:  

{ 'id': 'rx_io_data_long_addr', 'source_addr_long': b"\x00\x13\xa2\x00AF\xb6'",                  'source_addr': 

b'\x10\xf5', 'options': b'\x01', 'samples': [{'adc-0': 837}] }  

Our system uses the first 250 data frames to collect MAC addresses of XBee modules on the entire WSN. In order 

to reduce the redundancy of the MAC addresses, we move the members of MAC addresses from a List[ ] to a 

Set( ) which is unordered, no duplication data structure. In other words, we keep the unique MAC addresses in 

our WSN. Finally the members of the Set( ) is sent to a new MAC address list which includes all XBee modules 

without any redundancy.  

Next, the data of the room temperature is collected from the serial ports. A voltage value is obtained and converted 

to the corresponding temperature according to the following equation:  

temperature = (volt_average / 1023.0 * 1.2 * 3.0 * 100) - 273.15,      (1)  

where volt_average is the voltage value obtained from the temperature sensor. An ADC in XBee converts the 

voltage value to a digital value. The value 1023 is 0x3FF in binary format which represents the maximum value 

of the ADC reading. The converted temperature value is represented by degree Kelvin. Temperature in degree 

Celsius is obtained by subtracting 273.15 from degree Kelvin. For more detailed description, please refer Faludi’s 

website at https://www.faludi.com/bwsn/tmp36-instructions-simple-sensor-network.  

These temperature values will be appended to a different temperature list according to their MAC address. The 

values in the SQLite3 database will be updated simultaneously by calling an update database function. This 

procedure will be executed in a forever loop in which the data is kept receiving from the serial port till the user 

stops system from keyboard. A more detailed procedure is shown in Fig. 3.  
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Figure 3. Algorithm flowchart of the XBee based WSN.  

4. Data Plot using Matplotlib  

Each temperature data in a list represents the data collected by the wireless sensors in real time. We have a 

limitation of the list size. When the data exceeds the size of the list, we apply the pop function on the list in which 

we remove the oldest data from that list. Based on the total sensors in the WSN, we can plot the figures in 

sequential order vertically, i.e. one figure in each row. We also can apply two or three figures in each row by 

applying Matplotlib function plt.subplot(MNI), where M represents number of rows and N represents the numbers 

of columns. The value I represents the index of current figure. The drawnow function and plot function in different 

subplot figures will be refreshed periodically.   

To distinguish the locations of the sensors, we demonstrate the location information in the "xlabel" which is shown 

at the bottom of each plot. Fig. 4 shows a dynamic plot of live data in tempF list from a specific sensor. The newly 
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collected data is shown on the right of the display window. The total amount of data is within the length of the 

list temF.  

  
 Figure 4.  Values in tempF list.  

5. Data Record in the SQLite Database  

In order to keep the data log or upload the data to the cloud, we utilize the SQLite, a simple database, to record 

the temperature data with its MAC address and timestamp in the SQLite database. SQLite is a self-contained, 

server-less, full-featured SQL database engine. It has a very small footprint with an efficient usage of memory 

and storage space. It is highly reliable and doesn't need the maintenance from a professional database 

administrator. Therefore, SQLite is an excellent choice for the database engine in mobile devices such as smart 

phones, smart watches and other wearable electronic gadgets. Using a SQLite database with Python, we can build 

a cross platform database and shared the data seamlessly among smart devices.   

Here are the code snippets that create a database to hold real time temperature from our WSN system. To use the 

SQLite database in our system, we need to add"import sqlite3" statement to our python script. In our WSN system, 

we created a database file called "MyWSNdata.db".  

We use the function sqlite3.connect to connect to the database. Next we create a cursor object, which allows you 

to interact with the database and add records.  

conn = sqlite3.connect("MyWSNData.db") curs = conn.cursor()  

SQLite3 only supports five data types: null, integer, real, text and blob. Next, we apply the SQL syntax to create 

a table named "dataToPlot" with two text fields "mac_address date", "time" and one real number field 

"temperature".   def  create_table():  

curs.execute("CREATE TABLE IF NOT EXISTS dataToPlot(                                     mac_address 

TEXT  temperature REAL  date_time TEXT)")  

The following code will insert data into our new table:  

def  insert_data(macAddress  temp):  

 unixValue = time.time()          dateTime = str(datetime.datetime.fromtimestamp(unixValue).strftime(                                     

'%Y-%m-%d %H:%M:%S'))         curs.execute("INSERT INTO dataToPlot (mac_address  temperature  

date_time)                 VALUES (?  ?  ?)"  (macAddress  temp  dateTime))          

conn.commit()  

Here we call the SQL command "INSERT INTO" to insert a record into our database. In our curs. execute 

function, we use question marks (?) instead of string substitution (%s) to insert the values. To save the record to 

the database after insert operation, we need confirm our operations by calling conn. commit function.  
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In addition, we can read the data in SQLite by running the queries and then let the cursor object to execute the 

SQL command. Here are the code snippets for reading the data from the database: def  

read_data_from_db(sensor):        curs.execute('SELECT temperature FROM dataToPlot WHERE 

mac_address= ?' (sensor ))        data = curs.fetchall( )  

The query we execute is a "SELECT" command in SQL, which means that we want to select all the records that 

match the "mac_address" of a sensor. Finally, we execute the SQL command and use fetchall function to return 

all the results.   

6. Experiment Results  

6.1. Matplotlib plot results  

As shown in  Fig. 5, we diplayed real time temperature dynamically from four XBee sensors. The xlabel is the 

room number and the corresponding XBee MAC address. The dotted line in each plot represents the temperature 

value saved in the temperature list. When the total number of the dots exceed 20, the older values are removed 

from left side of the plot.  

 
    

Figure 5. Live data visualization in matrices format using Matplotlib.  

Matplotlib also provides a variety of plotting tools for user. All these plotting functions are command style 

functions that make Matplotlib work like MATLAB. Figure 6 shows the histogram style of  live data in our XBee 

based WSN.  
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Figure 6. Live data visualization in histogram format using Matplotlib.  

If the total number of the sensors are not even number, user can display data in vertical style with one column 

plot as shown in Fig. 7. The value on the right side is the latest value. The value on the left side is the oldest value 

and will be removed when the total amount of values exceed 20.  

  
Figure 7. Live data visualization in sequential order using Matplotlib.  
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For the smart building management application, a weekly or monthly average temperature data might help 

administration team to optimize the energy consumption. Fig. 8 shows the weekly average temperature value 

collected from sensors.  

  
Figure 8. Weekly average temperature value of each sensor  where 0-6 indicates seven days in a week.  

6.2. SQLite database results  
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Figure 9. Data record by the SQLite3 database.  

The temperature values are also recorded in a database created by the SQLite3. The results shown in Fig. 9 are 

the data recorded by the SQLite3 and displayed by the SQLite browser. We kept the MAC addresses of XBee 

nodes, temperature values, date and time in the table.   

These data could be uploaded on the cloud and accessed by the users via Internet.  

6.3 Data analysis on link quality  

In order to evaluate the quality of the wireless transmission of our XBee based WSN, we conducted a field test 

on the performance of four nodes in our system. As shown in Fig. 2, the quality of the wireless connection between 

two nodes were displayed by two numbers over the link which is called Link Quality Indicator (LQI). The LQI 

shows a number between 0 to 255 where 0 represents the weakest connection and 255 represents the strongest 

connection. In this work, we measured the LQI values for each node based on their distance to the XBee 

coordinator from 0 to 35 meters. As shown in Fig. 10, the quality of the link decreased in reverse proportional to 

the distance. It is noted that the decreasing of the quality may be due to the signal attenuation through room 

furniture or building walls.    

 

    

Figure 10. Wireless link quality measurements.    

7. Conclusion  

In this paper, we presented a novel low cost solution to real time temperature monitoring system for smart building 

using XBee based WSN. The experiment results demonstrated that data collected by the wireless sensors could 

be dynamically visualized by Matplotlib plotting. The data was also recorded by the SQLite3 database 

simultaneously for cloud usage. Moreover, we evaluated the link quality of the wireless transmission in our 

system. The system was implemented purely using Python which is an open source, cross platform language. The 

total system cost could be further reduced by adopting the single board computer like LattePanda, ODROID-

XU4, and Raspberry Pi. For our future work, the proposed system can be extended to collect data in the smart 

building with multiple tasks, such as humidity, carbon monoxide, and electricity consumption, where other open 

source databases, like PostgreSQL or MySQL, would be a better choice to handle complex tasks than SQLite. In 

addition, if we extend our system to a large scale WSN (e.g. a university campus with 500 rooms), the effect of 

bandwidth limitation shall be evaluated to ensure the quality of data transmission.  
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