
 American International Journal of Computer Science and Information

Technology
Volume.10, Number 5; September-October, 2025;

ISSN: 2837-388X | Impact Factor: 8.61

https://zapjournals.com/Journals/index.php/aijcsit

Published By: Zendo Academic Publishing

pg. 1

EFFICIENT DEEP CNN FOR HANDWRITTEN DIGIT RECOGNITION: A

PYTORCH AND SKORCH APPROACH

Daniel U. Okon

Article Info Abstract

Keywords: Handwritten Digit

Recognition; Deep Learning;

Convolutional Neural

Networks; PyTorch; Skorch;

MNIST; Hyperparameter

Optimization.

DOI

10.5281/zenodo.17136040

 Handwritten digit recognition remains a benchmark problem for

evaluating machine learning and deep learning algorithms. In this

study, we propose a simple yet effective convolutional neural network

(CNN) architecture for multi-class classification of the MNIST dataset,

implemented with PyTorch and Skorch. The model employs

hyperparameter optimization via grid search to fine-tune the activation

functions, kernel sizes, optimizers, and dropout rates. The experimental

results demonstrate state-of-the-art performance, achieving 99%

accuracy, precision, recall, and F1-score across all 10 digit classes.

Comparative analysis against baseline models—including decision

trees, SVMs, ANNs, and conventional CNNs—confirms that the

proposed model consistently outperforms prior approaches. These

findings highlight the effectiveness of lightweight, well-tuned CNN

architectures for digit recognition tasks and demonstrate the utility of

PyTorch and Skorch as efficient frameworks for model design, training,

and deployment. 1

I. INTRODUCTION

In recent years, artificial intelligence (AI) has become increasingly mainstream. Guo et al. (2016) observed that

ML and DL have emerged as specialized topics in response to the growing requirement to filter and comprehend

huge volumes of visual information supplied by various applications. Deep learning is a subtype of machine

learning in which algorithms can learn without being explicitly programed. Deep learning is a powerful method

for automatically extracting characteristics from images, allowing us to accomplish difficult tasks such as object

detection and categorization (Fourie, 2003). While a low-resolution image can affect a vast quantity of visual

input, the information inside it remains essentially intact. Figure 1 shows the loss of detail and resolution from

the original image. The image resolutions contain critical information for selecting where to search for the

Faculty of Computing, Department of Cybersecurity, University of Port Harcourt, Port Harcourt Rivers, Nigeria

E-mail: daniel.okon@uniport.edu.ng

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 2

appropriate classes. Recently, there has been an explosion in the amount of available visual materials. Object

detection is linked to visual information. The significance of object recognition and categorization has increased

dramatically. The ability to recognize visual objects is essential for human interaction and knowledge of the

natural environment. Humans have outstanding visual recognition skills as proven by their near-instantaneous

capacity to recognize familiar things, people, and meals. People can detect an object instantly regardless of

changes in size, perspective, lighting, or orientation (DiCarlo et al., 2012). Several attempts have been made in

computer vision research to develop systems capable of recognizing objects in the same way that humans do.

Ideally, we would employ a strategy to create a deep learning model that excels at all types of problems and

consistently generates excellent outcomes. The underlying idea of deep learning is that just as each problem in

the real world provides a unique set of challenges, each set of obstacles necessitates a unique set of techniques

and methods for overcoming them (Fourie, 2003). According to Pourjavan (2019), AIs deal with these obstacles

by using a variety of deep learning models, each of which is made up of several layers of perceptron’s that

transform and adapt data to solve problems. Image segmentation, or the process of dividing an image into

homogeneous segments, is required for a variety of image processing applications, such as object detection, image

recognition, feature extraction, and classification. Because of the recent explosion in this field of study, deep

learning has emerged as a critical tool for dealing with these types of difficulties, and it has broad potential

applications across many industries (Jabreel and Moreno, 2019). As classified by LeCun et al. (2022), Figure 3

depicts the 11 categories into which the handwritten digits from the MNIST database fall. Each category

corresponds to a different integer value ranging from 0 to 9. It is frequently used as a benchmark against which

other ML and DL techniques can be measured (Priyansh et al., 2020), (Lejeune, 2020). It is a huge dataset of

700,000 photos, each 28 28 pixels in size and with a single grayscale dimension. During the training phase,

60,000 photographs are used, whereas only 10,000 images are used during the testing phase.

 Fig. 1: Information loss due to the resolution

In this paper, we introduced a simple yet effective neural network technique that detects multiclassification in

digital handprint images from the MNIST dataset using two libraries: PyTorch and Skorch. PyTorch is a free and

open-source programming language that can be used for a variety of tasks, such as computer vision (Sikka, 2021),

image segmentation (Liu, 2020), natural language processing (Rothman , 2021), and object identification

(Ammirato et al., 2019). PyTorch was created in January 2016 by Facebook’s Artificial Intelligence Research.

Like Numpy arrays, PyTorch’s Tensor multidimensional array data format enables quick iteration on the

construction of advanced neural networks. The PyTorch framework allows researchers to rapidly create and train

CNN models on huge datasets. Regarding PyTorch's versatility, speed, and user-friendliness, Kadam et al. (2020)

and Jiang and Zhang (2021) have propelled it to the top of the list of the most extensively used deep learning

tools in both the commercial world and academic institutions. The classification accuracy of the experiment was

determined to be 88.39% using the Fashion MNIST data set. Ragab et al. (2022) proposed a capsule network-

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 3

based approach for detecting COVID-19 in X-ray images. The convolutional neural network was built using

PyTorch, and the final model has a success rate of 95%. The real-time graph processing capabilities of PyTorch

and the ease of tensor implementation on CPU and GPU are two of the reasons for its popularity. This quick and

easy tweak to the built-in model optimization speeds debugging and provides a pipeline for deploying PyTorch

models to cloud servers. Skorch is a high-level library for PyTorch that provides full scikit-learn compatibility,

although a lack of visualization tools makes monitoring and analysis difficult (Lopez, 2020). It is a wrapper that

converts between PyTorch and Scikit-learn. Consequently, models can be trained with Skorch using the well-

known scikit-learn API. Scikit-learn is a free machine learning software library (Lopez, 2020) that includes

several different types of results. Models can be trained with Skorch using the well-known scikit-learn API. Scikit

Learn is a free machine learning software library (Lopez, 2020) that includes several classification, regression,

and clustering models. Skorch is an expert in dealing with neural networks. It contains several useful features,

such as the following: Neural Network Building Blocks: torch.nn. Callbacks, analytics, and other scorch bells

and whistles that are supported through modules. Datasets can be directly passed to the fit method or packaged

in a Data Loader object beforehand. Models may be trained in parallel across several devices (GPUs, CPUs, and

TPUs) with minimal extra code, allowing compatibility with various Scikit-learn approaches. Skorch

automatically manages resources, eliminating the need for any callback functions (Lopez, 2020). Skorch is a

powerful tool that uses standard scikit-learn function sets to train, analyze, optimize, and upgrade ML models,

such as grid search, learning rate schedulers, parameter freezing and unfreezing, and early stop and check.

The following are the main objectives of this study:

 To propose a simple yet effective and efficient deep CNN using PyTorch for multi-classification of

handwritten MNIST digits.

 A precise comparison of the proposed and baseline models using several assessment metrics approaches.

The rest of the paper is divided into the following sections: Section II provides a detailed literature overview of

the topic at hand, while Section III provides in-depth information regarding the data chosen. Section IV presents

the proposed approach, while Section V presents the experimental setups and implementation of the model.

Sections VI and VII explain the critical analysis and the results. Finally, Section VII provides a comprehensive

summary of the topic and future research directions.

II. LITERATURE REVIEW

Image classification is a subset of computer vision that has significantly evolved over the last few years. Before

the emergence of deep learning, machine learning performance was minimal. Deep neural networks are

recognized for their ability to examine complex data structures. Neural networks with convolutional and fully-

connected functionalities have been designed to attain state-of-the-art performance in a variety of applications,

including speech recognition, image classification, natural language processing, and bioinformatics. Images

from the MNIST database have been classified using numerous techniques explored in the literature. Hu et al.

(2015) proposed a model in which neural networks are used to directly identify hyperspectral images in the

spectral domain. The proposed classifier comprises five weighted layers that are applied to each spectral

signature for discrimination, resulting in improved performance. The classification performance of this

technique is superior to that of conventional methods, such as SVM and standard deep learning-based methods,

as demonstrated by experimental findings on many hyperspectral image datasets on the MNIST dataset. Deep

learning approaches often rely on the SoftMax layer to obtain the characteristics of lower parameters. Tang et

al. (2013) proposed a model that implemented the linear SVM model instead of the SoftMax function. Learning

minimizes the margin-based loss rather than decreasing the cross-entropy loss. The MNIST and CIFAR-10

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 4

datasets were used to measure the performance of the model. Removing the soft-max layer with SVMs is

beneficial for classification tasks. Rather than using traditional feature extraction techniques, Ahlawat et al.

(2020) used a hybrid model technique where CNN and SM models were used, CNN was used as a feature

extraction model, and SM was used for binary handwritten image classification using the MNIST dataset. The

comparison of binary and normalized preprocessed datasets and their implications on model performance has

received relatively less attention. The preprocessing results are then used as input for neural networks to train

the model (Shamsuddin et al., 2018). Feature extraction is a preprocessing phase that seeks to reduce the

dimensionality of the input while obtaining useful information, as many classifiers struggle to effectively

analyze the raw pictures or data. The efficacy of a classifier may depend on the features’ quality as much as on

the classifier’s architecture. In the 1980s, neural networks were among the most widely used classifiers for

character recognition, as proven by the effectiveness of back-propagation neural network models (LeCun et al.,

2022). Lauer et al. (2007) emphasized the issues of feature extraction techniques for the recognition of MNIST

handwritten data. To address the issue in a black box approach without requiring any pre-existing expertise

with the data, Lauer proposed LeNet5, a trainable feature extractor neural network model, LeNet5. To improve

the generalizability of LeNet5, support vector machines were used to perform the classification process.

Mohapatra et al. (2015) described a multi-resolution feature extraction technique (discrete cosine S-transform)

for image classification that extracts the 400 DCST feature vector from each normalized training input data.

An ANN model is used along with feature extraction techniques to classify the handwritten images. For the

MNIST dataset, this framework achieved 98% accuracy. Liu et al. (2003) conducted a thorough evaluation of

the efficiency of many suggested classifiers, contrasting the linear and polynomial classifiers, the KNN

classifier, and other neural networks. Cardoso et al. (2013) implemented the outcomes of a biologically based

feature extraction model in a higher-dimensional space to train a linear classifier for digit recognition using the

MNIST and USPS datasets. A comprehensive analysis study of two neural network models, CNN and LSTM,

has been projected using the MNIST dataset to measure the model size, performance, time consumption, and

complexity of each model for upcoming digital comprehension on reconfigurable hardware (Kaziha et al.,

2019). Individuals do not typically write the same number in the same manner at a particular time. Because of

this within-class variation in the form of a character, character classification presents a significant challenge.

Multiple feature extraction techniques, such as biologically inspired model map transformation cascade (MTC)

for feature extraction (Cardoso et al., 2013), higher order SVD (Savas et al., 2007), a genetic algorithm (GA)-

based feature selection approach (De Stefano et al., 2014), fuzzy model-based recognition (Hanmandlu et al.,

2007), and a kernel and Bayesian discriminant-based classifier (Wen et al., 2012), have been presented to

classify the shape similarity within a class to enhance the recognition accuracy. Combining the structural risk

reduction capability of SVM and the deep feature extraction capabilities of CNN has proven to be extremely

effective in many applications (Tang et al., 2013; Xue et al., 2016; Ahlawat et al., 2020; Niu and Suen, 2012).

This study demonstrates that the combination (neural network and ML models) of CNN and SVM could be

quite effective for handwriting recognition. (Niu and Suen, 2012) combined CNN and SVM models for the

MNIST digit database and claimed a performance accuracy of 97.81%.

III. DATASET SELECTION

In this study, we used the MNIST hand-printed dataset for the experiment. The MNIST hand-printed digits

dataset is a set of images of hand-printed digits that are often used for training image recognition algorithms

using various machine learning and deep learning approaches, as proposed by Kaziha et al. (2019), Niu and

Suen (2012), and Tang et al. (2013). The dataset contains 60,000 training images and 10,000 test images, each

of which is 28x28 pixels in size. The images are grayscale and have been normalized to fit within the range of

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 5

×

0-255. There are 10 target classes in the dataset ranging from digits 0 to 9. The images were taken in a range of

sizes and contrasts, along with preprocessing with the removal of nondigital images. Many things are partially

veiled. Figure 2 shows the MNSIT dataset.

 Fig. 2: MNIST dataset

IV. PROPOSED APPROACH

In This section, an overview of the neural network proposed for the multiclassification of handprint digits on

MNIST. Using the PyTorch vision library (pytorch.org, n.d.), we were given access to a thoroughly vetted

and ready-to-use data set. After being imported using Data Loader, the dataset was normalized and

transformed to a tensor format using PyTorch. ToTensor is fundamental because it translates the visual into a

numerical form that the model can comprehend. The image is scaled from 255 to 1 after being separated into

its three-component channels (i.e., image, width, and height). Transformer Meanwhile, the tensor generated

using ToTensor is normalized by adjusting the data so that the mean is close to zero and the standard derivation

is close to one. Figure 3 shows a diagram of the suggested neural network’s design and its parameters.

Fig. 3. Proposed model architecture.

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 6

The PyTorch model consists of following levels: the input layer, the output layer (with 10 neurons), and three

hidden layers. The first two layers have a kernel size of 5x5 and a stride of 1, and the third has a kernel size of

2x2 with a stride of 1. There is no padding between the layers. For the proposed model, grid search was used to

determine the best hyperparameters, including activation function, neurons for each convolution layer,

optimizer, and learning rate. GridSearchCV performs an exhaustive search for an estimator over the parameter

values provided. This module provides a flexible method for tuning model hyperparameters without having to

directly define the logic required to execute the search. GridSearchCV (ghosh, 2022) is more efficient than trial

and error because it only evaluates the parameter combinations you specify, rather than all potential combinations.

GridSearchCV ensures that you are selecting the optimum combination of parameters because all possible

combinations are tested. However, it is a lengthy process due to the need to examine every conceivable

permutation that the given hyperparameter can produce must be examined. Table 1 shows the parameters of the

proposed model used by the grid search to obtain the optimal features. The model generated 128 unique features

with 384 model fits using a cross-validation threshold of 0.3 on the training dataset. Based on this, the following

grid search settings were chosen as optimal: To prevent linearity and control how much the network model learns

from the training dataset, the ReLU activation function selected through grid search was applied to the convolution

hidden layers, which have 10, 20, and 40 input and output features, respectively. Two max pooling layers with a

kernel size of 2x2 and stride 2 were also used to minimize the dimensionality of the feature maps and the number

of learned parameters. This reduces the computational resources required for model training. Subsequently, the

2D convolution layer is converted into a fully connected linear layer, and the neuron size is determined using the

following formula (OpenGenus, 2020):

 (
Cl − KS + 2PA

ST
) + 1 (1)

CI, convolutional layer output size; KS, kernel size; PA, padding; and ST, stride. Similar to the input hidden

layers, the output layer is a linear layer of 10 neurons, and its activation function, softmax (EDUCBA, 2022),

returns the probability of all classes equaling 1.

 Soft(yi) = (
exp(yi)

∑j exp(yi)
) (2)

The model is trained over 20 epochs with a batch size of 32 and a grid search-chosen cross-entropy loss. Cross

entropy loss measures the effectiveness of the categorization model, with loss near zero representing the best

model and loss near one indicating the worst model. The goal is to reach as close to zero as possible (Brownlee,

2019). Overfitting is a major issue that occurs when a model is trained in such a way that it becomes biased

toward a single class or dataset. Dropout layers with dropouts of 0.2 and 0.3, calculated by grid search, were

employed to regularize the model and reduce overfitting. The Adam optimizer was used to update the model’s

properties, such as weights, and a learning rate of 0.001 was used to help tweak the weights so that the model

could train even better. The neural network iterates several times with forward passes, and the model modifies

the weights based on the loss with backward passes with each pass. Once the model is trained, its performance

is evaluated using different assessment metrics. These metrics help us determine how accurately the model will

predict the unseen dataset. The two metrics used to evaluate the model performance on the MNIST dataset are

as follows:

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 7

Confusion Matrix

A confusion matrix is a table used to evaluate the classification model’s accuracy. The table comprises four rows

and four columns, each of which represents the number of correct and incorrect predictions made by the model

for each class. The first row of the table represents the true positives of the classifier, while the second row

represents its false positives. The third and fourth rows represent the classifier’s false negatives and true

negatives, respectively.

Classification Report

A classification report is another evaluation metric used to assess model performance. The report consists of the

following evaluation metrics:

 Accuracy is calculated by dividing the sum of all correctly predicted values by the total number of values

(true positives + false positives + false negatives + true negatives). This value can be interpreted as the percentage

of times the classifier correctly predicts the label of a given instance.

 Precision is calculated by taking the sum of all true positive values and dividing it by the total number of

predicted positive values (true positives + false positives). This value can be interpreted as the percentage of

times the classifier correctly predicts a positive label.

 Pre = (
All Positive

All Postive + False Positive
)

 The recall is calculated by dividing the sum of all true positive values by the total number of actual

positive values (true positives + false negatives). This value can be interpreted as the percentage of times the

classifier correctly detects a positive label.

 Recall = (
All Positive

All Positive + False Negative
)

 The F1 score is calculated as the sum of precision and recall. This value can be interpreted as the balance

between precision and recall.

 F1 Score = 2 X (
Pre x Recall

Pre + Recall
)

 Table. 1 Grid search parameters

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 8

V. IMPLEMENATAION

The The experiment was conducted on a Jupyter notebook using Google collaboratory, a free cloud-based

Jupyter notebook environment that requires no setup or installation and provides a prebuilt environment setup

with most common libraries installed as well as gpu access for fast deep learning model computation. Pytorch

was used for the experiments. The Pytorch library has various datasets, including cigar 10 and moist. Therefore,

the MNIST dataset was loaded as shown in Figure 4.

Fig. 4. MINST data loader

After loading the training and test datasets, Pytorch was used to generate the model, and Skroch was used to

implement grid search to discover the most ideal parameters for the model to provide the best accuracy. Figures

5 and 6 depict the proposed model’s implementation using grid search.

Fig. 5. Implementation of Grid Search

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 9

Fig. 6. Proposed model code

The model was trained again with the optimal grid search settings. Figure 7 shows the optimal parameters

discovered by the grid search. Skorch NeuralNetClassfier (López, 2020) was used as a wrapper to run the

Pytorch model. As stated in Section IV, the model was rerun using 20 epochs, a batch size of 32, and a lr rate

of 0.0001. Figure 8 displays the proposed Skroch model implementation.

Fig. 7. Best Parameters

The model’s performance was then evaluated on the test dataset using a confusion matrix and classification

report. The model predicted the digits for each image in the test data and was then compared to the original digit

labels for each image to determine the accuracy of the model. Figure 9 shows the creation of a confusion matrix

and a classification report on a test dataset. Both functions are included in the sklearn package, so they are called

and used to perform evaluations using these metrics.

Fig. 8. Proposed Skorch Model Implementation

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 10

Fig. 9. Confusion matrix and classification report

VI. EXPERIMENTAL ANALYSIS AND RESULTS

This section summarizes the experimental process used in this research. The performance of the model was

evaluated using the MNIST pictures dataset. Figures 11 and 12 exhibit the confusion matrix and classification

report, respectively, to demonstrate the effectiveness of the model. The proposed model performed remarkably

well in trials on the MNIST dataset. The proposed model went through a learning curve using the training dataset.

To train the model, we used batch processing. A training set and a test set were generated from the entire dataset.

The training set contains sixty thousand images, whereas the test set contained 10,000 images. The proposed

model’s loss was determined using categorical crossentropy throughout the training procedure. The model

performed admirably in the analysis. After putting the proposed model through its paces using test data that

neither the model nor the testers have seen before, it obtains an accuracy of 0.99. The proposed model performed

remarkably well on the MNIST dataset using the testing set, with a 0.99 precision score and 0.99 recall and F1-

score, respectively. Figure 10 displays the loss of the proposed model during training and testing, showing a

consistent decrease in loss with each training and testing epoch. This indicates that the model learned its

parameters well and did not overfit or underfit. Figure 12 shows the classification analysis results of the proposed

model. The complete findings of the proposed model’s application to the MNIST dataset are detailed in the

Classification report. The number of samples included in the testing set is displayed on the support. The

classification report includes class-specific precision, recall, and f1 scores, as well as the proposed model’s

overall accuracy and the results of the other assessment metrics via macro and weighted average measures. Figure

VII graphically depicts the confusion matrix. The confusion matrix displays the correct and incorrect

classifications of the proposed neural network. Classifier-corrected examples are shown in blue, while cases

misclassified by the neural network are indicated in red. The confusion matrix demonstrates the effectiveness of

the model in class identification, revealing that just 142 out of 10,000 rows were incorrectly labeled. The digit 9

class had the most miss classified labeled rows, followed by the digit 2 class. The PyTorch model contains only

four misclassified images in Class 1, making it the most accurate class.

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 11

 Fig. 10. Training and test loss

 Fig. 11. Model confusion matrix

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 12

 Fig.12. Model classification report

VII. CRITICAL ANALYSIS

This section compares the performance of the proposed model to that of various baseline models. The experiment

was conducted in a nearly identical scenario, using the same dataset and the same distribution of test and training

datasets. The proposed approach’s performance was examined using both machine learning and deep learning

models. The MNSIT dataset was also employed in the baseline models. In each baseline research, the experiment

was conducted with several parameterized settings, and the results were displayed. Each baseline model employed

a different assessment measure although all used accuracy. The baseline models used several ML and DL

techniques, from decision trees to CNNs with varying parameters, layers, and epochs. Table II compares the

proposed model to various baseline models. According to the table, our proposed model performed the best and

had a maximum accuracy of 0.99%, whereas all baseline models had the lowest accuracy. The results

unequivocally demonstrate that the proposed model outperforms the existing techniques. The model gained

approximately 10% accuracy gain from diverse machine learning models, which is a significant margin. It also

gained 7% and 1% accuracy gain from different AI and CNNs, respectively. Furthermore, the substantial accuracy

improvement from ML suggests that DL works better for image classification because convolution models can

easily extract significant features during the training phase, which ML models cannot do.

Table 2. Comparison of baseline models

VIII. DISCUSSION

This study reinforces the role of big data analytics and deep learning in addressing the classification task

scalability and accuracy challenges. Traditional ML models struggle to manage high-dimensional datasets and

achieve limited performance in image recognition and similar domains (Guo et al., 2016; Ahlawat & Choudhary,

2020). Convolutional neural networks (CNNs) have consistently demonstrated superior performance for digit

recognition owing to their ability to automatically extract spatial features (LeCun et al., 2022; Kadam et al., 2020).

The integration of PyTorch and Skorch proved effective in simplifying model development and hyperparameter

optimization, enabling efficient training and deployment of CNN architectures (López, 2020; Han & Zhang,

2022). The grid search optimization significantly enhanced the model’s performance, aligning with recent

findings that hyperparameter tuning is critical for achieving state-of-the-art results in DL (Rahman & Hossain,

2023).

The experimental results—achieving 99% accuracy, precision, recall, and F1-score—are consistent with recent

studies that highlight the dominance of CNNs in visual recognition tasks (Khan et al., 2021; Zhang, Sun & Lin,

2023). The proposed CNN architecture achieved a substantial accuracy margin compared with baseline machine

learning models such as decision trees, SVMs, and KNN, echoing the observation that deep models capture

features inaccessible to conventional algorithms (Hu et al., 2015; Singh, Sharma & Kumar, 2022).

Baseline Models Test accuracy (%)

Decision tree (Gope et al., 2021) 0.90

SVM (Gope et al., 2021) 0.95

Random Classifier (Gope et al., 2021) 0.93

Naïve Bayes (Gope et al., 2021) 0.90

KNN (Gope et al., 2021) 0.86

CNN (Kadam et al., 2020) 0.98

ANN (Pandey et al., 2020) 0.93

Proposed CNN model 0.99

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 13

Although the model performed exceptionally well on MNIST, it shares the following limitations of benchmark-

based studies: minority misclassifications and dataset simplicity. Recent research emphasizes extending CNN

architectures to more complex datasets, such as Fashion-MNIST and CIFAR-10 (Doshi, Patel & Shah, 2022;

Ragab et al., 2022). Additionally, CNNs are vulnerable to crafted perturbations that can mislead classifiers (Singh

et al., 2022). Therefore, future work should address class imbalance, adversarial defense mechanisms, and TL

approaches to ensure broader applicability in real-world scenarios (Alqahtani & Wang, 2024).

IX. CONCLUSION AND FUTURE WORK

This study presented a simple yet effective convolutional neural network using PyTorch for multiclassification of

the MNIST hand-written image dataset, which is lightweight, organized, and preprocessed and has 10 classes.

The MNIST dataset is an invaluable resource for classification tasks and proof-of-concept projects, as well as for

gaining insights into DL techniques. Our two major libraries for implementing the deep neural network are

PyTorch and Skorch. The main implementation of the model was performed in Pytorch, with Skroch used as a

wrapper atop it to help determine the most effective hyperparameters using grid search. The grid search iteratively

tests the model performance with multiple parameters and provides the optimal parameters for the final model

implementation. To assess the model’s performance across all ten classes, various assessment metrics, such as

precision, recall, f1-score, accuracy, and confusion matrix, were established. The proposed model performed

remarkably well, with an overall precision, recall, f1-score, and accuracy of 99%. Furthermore, comparison

research was conducted using several baseline studies that employ approaches ranging from ML to DL algorithms.

The comparison with baseline models clearly reveals that the suggested approach performs extremely well on the

MNSIT dataset, with an accuracy improvement of over 10% from ML models and nearly 7% and 1% accuracy

gains from ANN and CNN models, respectively. The results show that the proposed deep learning model achieved

a very high classification accuracy on the MNIST dataset. Furthermore, the model was able to learn from the data

with very little pre-processing, which is a significant advantage. In conclusion, this study has shown that deep

learning is a powerful tool for image classification and can be applied to real-world datasets with excellent results.

REFERENCES

Ahlawat, S., & Choudhary, A. (2020). Hybrid CNN-SVM Classifier for Handwritten Digit

Recognition. Procedia Computer Science, 167, pp.2554–2560. doi:10.1016/j.procs.2020.03.309.

Ammirato, P., & Berg, A. (2019). A mask-RCNN baseline for probabilistic object detection. [online]

Available at: https://arxiv.org/pdf/1908.03621.pdf [Accessed December 22, 2022].

Cardoso, Â. and Wichert, A. (2013). Handwritten digit recognition using biologically inspired

features. Neurocomputing, 99, pp.575–580. doi:10.1016/j.neucom.2012.07.027.

De Stefano, C., Fontanella, F., Marrocco, C., & Di Freca, A. S. (2014). GA-based feature selection with

ANFIS Approach to Breast Cancer Recurrence. (2016). International Journal of Computer Science

Issues, 13(1), pp.36–41. doi:10.20943/ijcsi-201602-3641.

DiCarlo, James J., Zoccolan, D., & Rust, Nicole C. (2012). How does the brain solve visual object

recognition? Neuron, 73(3), 415–434. https://doi.org/10.1016/j.neuron.2012.01.010.

 EDUCBA. (2022). PyTorch SoftMax | Complete Guide on PyTorch Softmax? [online]. Available from:

https://www.educba.com/pytorch-softmax/.

Fourie, C. M. (2003). Deep learning? What deep learning? South African Journal of Higher Education, 17(1).

https://doi.org/10.4314/sajhe.v17i1.25201.

https://www.educba.com/pytorch-softmax/

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 14

Guo Y, Liu Y, Oerlemans A, Lao S, Wu, S. and Lew, M.S. (2016). Deep learning for visual understanding: A

review. Neurocomputing [online] 187, pp.27–48. doi:10.1016/j.neucom.2015.09.116.

Hanmandlu, M., & Murthy, O. V. R. (2007). Fuzzy model based recognition of handwritten numerals. Pattern

Recognition, 40(6), pp.1840–1854. doi:10.1016/j.patcog.2006.08.014.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level

performance on ImageNet classification. [online]. Available from:

https://openaccess.thecvf.com/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_pape

r.pdf.

Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H., 2015. Deep Convolutional Neural Networks for Hyperspectral

Image Classification. Journal of Sensors, [online] 2015, p.e258619. doi:10.1155/2015/258619.

Jabreel, M., & Moreno, A. (2019). A Deep Learning-Based Approach for Multi-Label Emotion Classification

in Tweets. Appl Sci, 9(6), 1123. doi:10.3390/app9061123.

Jiang, L., & Zhang, Z. (2021). Research on Image Classification Algorithm Based on Pytorch. Journal of

Physics: Conference Series, 2010(1), p.012009. doi:10.1088/1742-6596/2010/1/012009.

Kadam, S. S., Adamuthe, A. C., & Patil, A. B. (2020). CNN model for image classification on MNIST and

fashion-MNIST dataset. Journal of Scientific Research, 64(02), 374–384.

https://doi.org/10.37398/jsr.2020.640251.

Kaziha, O., & Bonny, T. (2019). A comparison of quantized convolutional and LSTM recurrent neural

network models using MNIST. [Online] IEEE Xplore.

https://doi.org/10.1109/ICECTA48151.2019.8959793.

Lauer, F., Suen, C. Y. and Bloch, G. (2007). A trainable feature extractor for handwritten digit

recognition. Pattern Recognition, 40(6), pp.1816–1824. doi:10.1016/j.patcog.2006.10.011.

LeCun, L., Henderson, J., Le Cun, Y., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L.

(2022). Handwritten Digit Recognition with a Back-Propagation Network. Journal of Computer

Science. [Online]. Available from:

https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf.

Lejeune, E. (2020). Mechanical MNIST: A benchmark dataset for mechanical metamodels. Extreme

Mechanics Letters, 36, p.100659. doi:10.1016/j.eml.2020.100659.

Liu, C. L., Nakashima, K., Sako, H., & Fujisawa, H. (2003). Handwritten digit recognition: benchmarking of

state-of-the-art techniques. Pattern Recognit [online] 36(10), pp.2271–2285. Doi: 10.1016/s0031-

3203(03)00085-2.

Liu, Y. (2020). 3D Image Segmentation of MRI Prostate Based on a Pytorch Implementation of V-

Net. Journal of Physics: Conference Series, 1549, 042074. https://doi.org/10.1088/1742-

6596/1549/4/042074.

López, F. (2020). SKORCH: PyTorch Models Trained with a Scikit-Learn Wrapper. [Online] Medium.

Available from: https://towardsdatascience.com/skorch-pytorch-models-trained-with-a-scikit-learn-

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 15

wrapper-62b9a154623e

Mohapatra, R., Majhi, B., & Kumar, S. (2015). Classification performance analysis of MNIST dataset

utilizing a multi-resolution technique. [Online]. Available at:

http://dspace.nitrkl.ac.in:8080/dspace/bitstream/2080/2403/1/Classification_Mohapatra_2015.pdf

[Accessed 30 Dec. 2022].

Niu, X.-X. And Suen, C.Y. (2012). A novel hybrid CNN–SVM classifier for recognizing handwritten

digits. Pattern Recognit 45:1318–1325. https://doi.org/10.1016/j.patcog.2011.09.021.

Overview of classification methods in Python with Scikit-Learn", Stack Abuse, 2022. [Online]. Available:

https://stackabuse.com/overview-of-classification-methods-in-python-with-scikit-learn/.

Pourjavan, S. (2019). Definitions: machine learning, deep learning and AI understanding. Acta Ophthalmol.

97, S263. https://doi.org/10.1111/j.1755-3768.2019.8214.

Priyansh, P., Ritu, G., Mazhar, K., & Sajid, I. (2020). Multi-digit number classification using MNIST and

ANN. International Journal of Engineering Research and, V9 (05). Doi: 10.17577/ijertv9is050330.

Ragab, M., Alshehri, S., Alhakamy, N. A., Mansour, R. F., & Koundal, D. (2022). Multiclass Classification

of Chest X-Ray Images for the Prediction of COVID-19 Using Capsule Network. Computational

Intelligence and Neuroscience, 2022, pp.1–8. doi:10.1155/2022/6185013.

Rothman, D. (2021). Transformers for natural language processing: Build innovative deep neural network

architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more.

XXXXXXXXXXXX. [online] Google Books. Packt Publishing Ltd. Available from:

https://books.google.com.ng/books?hl=en&lr=&id=Cr0YEAAAQBAJ&oi=fnd&pg=PP1&dq=++Ro

thman [Accessed 27 Dec. 2022].

Savas, B., & Eldén, L. (2007). http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A18008. [Online]

Available from: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A18008&dswid=5745

[Accessed 20 Dec. 2022].

Shamsuddin, M. R., Abdul-Rahman, S., & Mohamed, A. (2018). Exploratory Analysis of MNIST

Handwritten Digit for Machine Learning Modeling. Communications in Computer and Information

Science, pp.134–145. Doi: 10.1007/978-981-13-3441-2_11.

Sikka, B. (2021). Elements of deep learning for computer vision: explore deep neural network architectures,

PyTorch, object detection algorithms, and computer vision applications for Python coding.

[Online] Google Books. BPB Publications. Available from:

https://books.google.com.ng/books?hl=en&lr=&id=n8U0EAAAQBAJ&oi=fnd&pg=PT19&dq=Sikk

a [Accessed 24 Dec. 2022].

Tang, Y. (2013). Deep learning using linear support vector machines. [Online]. Available at:

https://arxiv.org/pdf/1306.0239.pdf.

Wen, Y. (2012). An improved discriminative common vectors and support vector machine based face

recognition approach. Expert Syst Appl, 39(4), 4628–4632. doi:10.1016/j.eswa.2011.09.119.

https://stackabuse.com/overview-of-classification-methods-in-python-with-scikit-learn/

American International Journal of Computer Science and Information Technology Vol. 10 (5)

pg. 16

Xue, D.-X., Zhang, R., Feng, H., & Wang, Y.-L. (2016). CNN-SVM for microvascular morphological type

recognition with data augmentation. Journal of Medical and Biological Engineering, 36(6), pp.755–

764. doi:10.1007/s40846-016-0182-4.

Alqahtani, A., & Wang, H. (2024). Advances in Deep Convolutional Networks for Visual Recognition: A

Survey IEEE Access, 12, 12501-12520. doi: 10.1109/ACCESS.2024.3352104

Zhang, Y., Sun, Y., & Lin, X. (2023). Scalable DL for image recognition in big data environments Future

Generation Computer Systems, 144, 85-97. https://doi.org/10.1016/j.future.2023.01.005

Doshi, K., Patel, D., & Shah, H. (2022). Lightweight Convolutional Neural Networks for Handwritten Digit

Recognition Procedia Comput Sci, 198, 12-20. https://doi.org/10.1016/j.procs.2021.12.003

Rahman, M., & Hossain, S. (2023). Hyperparameter optimization of convolutional neural network models for

handwritten digit classification. Applied Intelligence, 53(7), 8451-8463. doi: 10.1007/s10489-022-

04125-6

Han, J., & Zhang, W. (2022). PyTorch-based deep learning frameworks for computer vision applications.

Journal of Imaging, 8(9), 238. doi: 10.3390/jimaging8090238

Khan M, Akhtar N, Rehman S. 2021. Hybrid Convolutional Neural Network architectures for image

classification: A case study on MNIST and CIFAR datasets International Journal of Machine Learning

and Cybernetics, 12(11), 3313-3327. DOI: 10.1007/s13042-021-01342-7

Singh, A., Sharma, R., & Kumar, V. (2022). Robust lightweight convolutional neural networks for

handwritten digit recognition under adversarial attacks. Neural Computing and Applications, 34(21),

19157-19172. DOI: 10.1007/s00521-022-07450-9

