American International Journal of Computer Science and Information Technology (AIJCSIT)

FIELD APPLICATIONS OF AQUACROP-OSPY: REAL-TIME IRRIGATION TECHNIQUES

Authors

  • Jonathan Michael Reed Creative Solutions, Beavercreek, Ohio, USA
  • Emily Catherine Bennett Creative Solutions, Beavercreek, Ohio, USA

Abstract

Crop and irrigation modeling based on fundamental physics can significantly enhance the forecasting of agricultural requirements and production, aiding preparation for future planting and harvesting cycles. Aqua Crop is a widely used model that predicts daily watering needs with flexible data input options, accommodating various crop, soil, terrain, and irrigation configurations. By utilizing historical weather data, Aqua Crop estimates daily crop water requirements for upcoming seasons, assuming similar weather patterns. AquaCrop-OSPy, an open-source implementation of Aqua Crop developed in collaboration with its original authors, offers a promising extension of this tool. This paper explores the potential of AquaCrop-OSPy to integrate real-time weather data and generate real-time irrigation control signals. The proof-of-concept described herein demonstrates the feasibility of this approach. Initial development involved software to query up-to-date weather data and estimate evapotranspiration (ETo) for a single crop under standard conditions, coupled with a microcontroller to validate real-time functionality. Encouraged by these results, the scope was expanded to fully automate human-supervised irrigation using AquaCrop-OSPy. The paper outlines the technical development, challenges encountered, and potential benefits of this innovative irrigation solution. All related software is available at https://github.com/SoothingMist/Embeddable-Software-for-Irrigation-Control

Keywords:

AquaCrop-OSPy Real-time irrigation Crop modeling Evapotranspiration (ETo) Automated irrigation systems

Published

2024-07-25

DOI:

https://doi.org/10.5281/zenodo.12819584

Issue

Section

Articles

How to Cite

Reed , J. M., & Bennett, E. C. (2024). FIELD APPLICATIONS OF AQUACROP-OSPY: REAL-TIME IRRIGATION TECHNIQUES . American International Journal of Computer Science and Information Technology (AIJCSIT), 9(2), 10–20. https://doi.org/10.5281/zenodo.12819584

References

Abdulhameed I (2016). How to know exactly the volume of water needed for example 7 mm irrigation rate. Department of Irrigation and Drainage Engineering, University of Anbar, Iraq, ResearchGate question response, Available at:

https://www.researchgate.net/post/How-to-know-exactly-the-volumeof-water-needed-for-example-7-mm-irrigation-rate.

Abioye EA, Hensel O, Esau TJ, Elija O, Abidin MSZ, Ayobami AS, Yerima O, Nasirahmadi A (2022). Precision irrigation management using machine learning and digital farming solutions. AgriEngineering 4(1):70-103, Available at: https://www.mdpi.com/2624-7402/4/1/6.

Abolafie-Rosenzweig R, Livneh B, Small EE, Kumar SV (2019). Soil moisture data assimilation to estimate irrigation water use. Journal of Advances in Modeling Earth Systems 11(11). Available at: https://www.researchgate.net/publication/337162040_Soil_Moisture_ Data_Assimilation_to_Estimate_Irrigation_Water_Use.

Allen RG, Pereira LS, Raes D, Smith M (1998). FAO Irrigation and Drainage Paper No. 56 – Crop Evapotranspiration. United Nations Report, Available at: http://academic.uprm.edu/abe/backup2/tomas/fao%2056.pdf.

Awawda J, Ishaq I (2023). IOT smart irrigation system for precision agriculture. Proceedings: Intelligent Sustainable Systems, pp. 335-

Available at:

https://www.researchgate.net/publication/367398621_IoT_Smart_Irrig ation_System_for_Precision_Agriculture

Brahmanand PS, Singh AK (2022). Precision irrigation water management - Current status, scope and challenges. Indian Journal of Fertilizers 18(4):372-380. Available at: https://www.researchgate.net/profile/Anil-Kumar-

Singh/publication/360119350_Precision_Irrigation_Water_Manageme nt_-_Current_Status_Scope_and_Challenges/links/6262f6a48cb84a40ac 81ed34/Precision-Irrigation-Water-Management-Current-StatusScope-and-Challenges.

Caldwell TG, Cosh MH, Evett S, Edwards N, Hofman H, Illston BG, Meyers T, Skumanich M, Sutcliffe K (2022). In situ soil moisture sensors in undisturbed soils. Journal of Visualized Experiments.

Available at: https://www.researchgate.net/publication/365585346_In_situ_Soil_M oisture_Sensors_in_Undisturbed_Soils.

Ccama IB, Santoro BF, Semino JO (2022). Model predictive control for precision irrigation of a quinoa crop. Open Chemistry, review article. Available at: https://www.degruyter.com/document/doi/10.1515/chem2022-0264/html.

Chen P, Fedosejevs G, Tiscareno-Lopez M, Arnold JG (2006). Assessment of modis-evi, modis-ndvi and vegetation-ndvi composite data using agricultural measurements. Environmental Monitoring and Assessment 119:69-82. Available at: https://naldc.nal.usda.gov/download/28732/PDF.

Chowdhury S, Sen S, Janardhanan S (2022). Comparative analysis and calibration of low cost resistive and capacitive soil moisture sensor. Internal Report, Department of Electrical Engineering, Indian Institute of Technology, Delhi. Available at: https://www.researchgate.net/publication/364222494_Comparative_A nalysis_and_Calibration_of_Low_Cost_Resistive_and_Capacitive_S oil_Moisture_Sensor.

Darji P, Desai N, Bhavsar D, Pandya H (2023). Applications of remote sensing in agriculture. International Association of Biologicals and Computational Digest 2(1):108–117, Available at:

https://www.researchgate.net/publication/370762708_A_REVIEW_A PPLICATIONS_OF_REMOTE_SENSING_IN_AGRICULTURE.

Delgoda D, Hector M, Syed KS, Malka NH (2015). Irrigation control based on model predictive control (MPC): Formulation of theory and validation using weather forecast data and AquaCrop model. Elsevier

Press, Journal of Environmental Modelling and Software 78:40-53,

Available at: https://www.researchgate.net/publication/281967077_Root_zone_soil _moisture_prediction_models_based_on_system_identification_Form ulation_of_the_theory_and_validation_using_field_and_AQUACROP _data.

Delgoda D, Syed KS, Malano H, Halgamugeb MN (2016). Root zone soil moisture prediction models based on system identification: Formulation of the theory and validation using field and AquaCrop data. Elsevier Press. Journal of Agricultural Water Management, 163:344-353. Available at: https://www.researchgate.net/publication/281967077_Root_zone_soil _moisture_prediction_models_based_on_system_identification_Form ulation_of_the_theory_and_validation_using_field_and_AQUACROP _data.

Food and Agriculture Organization of the United Nations (FAO) (2023). AquaCrop downloads and documentation. Available at: https://www.fao.org/aquacrop.

Foster T, Brozovic N, Butler AP, Neale CMU, Raes D, Steduto P, Fereres, E, Hsiao TC (2016). AquaCrop-OS: An open source version

of FAO’s crop water productivity model. Elsevier Press, Journal of Agricultural Water Management 181:18-22. Available at: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1014&cont ext=wffdocs.

Gundim A, Melo V, Coelho R, Silva J, Rocha M, Franca A, Conceicao A. (2023). Precision irrigation trends and perspectives. Rural Engineering 53(8). Available at:

https://www.researchgate.net/publication/368854060_Precision_irriga tion_trends_and_perspectives_a_review.

Gurmiere SJ, Camporese M, Botto A, Lanfond JA, Paniconi C, Gallichand J, Rousseau AN (2020). Machine learning vs. physicsbased modeling for real-time irrigation management. Frontiers in Water, Section on Water and Hydrocomplexity, 2. Available at: https://www.frontiersin.org/journals/water/articles/10.3389/frwa.2020. 00008/full.

Kassing R, Schutter B, Abraham E (2020). Optimal control for precision irrigation of a large-scale plantation. Wiley Agricultural Publications, Journal of Water Resources Research 56(10), Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019WR0269 89.

Kelly TD, Foster T (2021) AquaCrop-OSPy: Bridging the gap between research and practice in crop-water modeling. Elsevier Press, Journal of Agricultural Water Management, p. 254. Available at: https://www.sciencedirect.com/science/article/pii/S037837742100241 9?via%3Dihub.

Kelly TD (2022). Assessing the Value of Improved Information and Management Strategies for Optimal Irrigation Scheduling. Dissertation, Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester. Available at: https://pure.manchester.ac.uk/ws/portalfiles/portal/234007118/FULL_ TEXT.PDF.

Katz L, Ben-Gal A, Litaor MI, Naor A, Peres M, Avira P, Alchanatis V, Cohen Y (2022). A spatiotemporal decision support protocol based on thermal imagery for variable rate drip irrigation of a peach orchard.

Irrigation Science 41(21):1-19, Available at: https://www.researchgate.net/publication/364952761_A_spatiotempor al_decision_support_protocol_based_on_thermal_imagery_for_varia ble_rate_drip_irrigation_of_a_peach_orchard.

Katz L, Ben-Gal A, Litaor MI, Naor A, Peeters A, Goldshtein E, Ligor G, Keisar O, Rosenfeld SM, Alchanatis V, Cohen Y (2023). How sensitive is thermal image-based orchard water status estimation to canopy extraction quality. Remote Sensing, v. 15, Available at: https://www.researchgate.net/publication/369037800_How_sensitive_ in_thermal_imagebased_orchard_water_status_estimation_to_canopy_extraction_quali ty.

Liang Z, Liu X, Xiong J, Xiao J (2020) Water allocation and integrative management of precision irrigation. Water 12(11), Available at: https://www.mdpi.com/2073-4441/12/11/3135.

Luong TT, Vorobevskii I, Kronenberg R, Jacob F, Peters A, Petzoid R, Andreae H (2023). Toward reliable model-based soil moisture estimates for forest managers. Meteorologische Zeitschrift. Available at:

https://www.researchgate.net/publication/370323313_Toward_reliable _model-based_soil_moisture_estimates_for_forest_managers.

Lyu J, Jiang Y, Xu C, Liu Y, Su Z, Liu J, He J (2022). Multi-objective winter wheat irrigation strategies optimization based on coupling AquaCrop-OSPy and NSGA-III: A case study in Yangling, China. Elsevier Press, Science of the Total Environment 843(4). Available at: https://www.researchgate.net/publication/361641689_Multiobjective_winter_wheat_irrigation_strategies_optimization_based_on _coupling_AquaCrop-OSPy_and_NSGAIII_A_case_study_in_Yangling_China.

Martin DL, Gilley JR (1993). Irrigation Water Requirements. National Engineering Handbook, Part 623, Section 15, Irrigation. Available at: https://www.wcc.nrcs.usda.gov/ftpref/wntsc/waterMgt/irrigation/NEH1 5/ch2.pdf.

Mather PM. (1999) Computer Processing of Remotely-Sensed Images, 2nd Edition. West Sussex, England: John Wiley & Sons, p. 120, Available at: https://amzn.to/440YOBd.

Netafim (2022) Corn production using subsurface drip irrigation. System

Manual, Available at: https://www.netafimusa.com/4a3ea3/ globalassets/literature-usa/corn-manual.pdf.

Norizan MS, Wayayok A, Abdullah AF, Mahadi MR, Karim YA (2021). Spatial variations in water-holding capacity as evidence of the need for precision irrigation. Water 13(16). Available at: https://www.mdpi.com/2073-4441/13/16/2208.

Plascak I, Jurisic M, Radocaj D, Vujic M, Zimmer D. (2021). An overview of precision irrigation systems used in agriculture. Technical

Gazette 15(4). Available at: https://www.researchgate.net/publication/355845700_An_Overview_ of_Precision_Irrigation_Systems_Used_in_Agriculture.

Samreen T, Ahmad M. Baig M, Kanwal S, Nazir M, Muntaha S (2022). Remote sensing in precision agriculture for irrigation management.

Environmental Sciences 23(1). Available at:

https://www.researchgate.net/publication/367621928_Remote_Sensi ng_in_Precision_Agriculture_for_Irrigation_Management.

Schwamback D, Persson M, Berndtsson R, Bertotto LE, Kobayashi A, Wendland E (2023). Automated low-cost soil moisture sensors: Trade-off between cost and accuracy. Sensors 23(5). Available at: https://www.researchgate.net/publication/368720737_Automated_Lo

w-Cost_Soil_Moisture_Sensors_TradeOff_between_Cost_and_Accuracy.

Sharma PK, Kumar D, Srivastava HS, Patel P (2018). Assessment of different methods for soil moisture estimation. Remote Sensing and GIS 9(1):57-73. Available at:

https://www.researchgate.net/profile/Pavan- Sharma3/publication/325568808_Assessment_of_Different_Methods_for_Soi l_Moisture_Estimation_A_Review/links/5b165361a6fdcc31bbf5953d/ Assessment-of-Different-Methods-for-Soil-Moisture-Estimation-AReview.

Steven MD (1998). The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sensing of Environment 63:49-60.

Available at: https://www.researchgate.net/publication/229367131_The_Sensitivity _of_the_OSAVI_Vegetation_Index_to_Observational_Parameters.

Thorp K, Calleja S, Pauli W, Thompson A, Elshikha D (2022). Agronomic outcomes of precision irrigation management technologies with varying complexity. Transactions of the American

Society of Agricultural and Biological Engineers 65(1):135-150.

Available at: https://www.researchgate.net/publication/357950237_Agronomic_Out comes_of_Precision_Irrigation_Management_Technologies_with_Var ying_Complexity.

Zhang J, Guan K, Peng B, Jiang C, Zhou W, Yang Y, Pan M, Franz TE, Heeren DM, Rudnick DR, Abimbola O, Kimm H, Caylor K, Good S, Khanna M, Gates J, Cai Y (2021). Challenges and opportunities in precision irrigation decision-support systems for center pivots. Environmental Research Letters 16(5). Available at: https://iopscience.iop.org/article/10.1088/1748-9326/abe436/meta.

Zhang T, Su J, Liu C, Chen WH (2019) Integration of calibration and forcing methods for predicting timely crop states by using aquacropos model. 2nd UK-RAS Robotics and Autonomous Systems Conference, Loughborough, UK. Available at: https://aura.abdn.ac.uk/bitstream/handle/2164/18937/Zhang_etal_UK RAS_Integration_of_Calibration_VOR.pdf?sequence=1.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.