Advanced Journal of Environmental Sciences (AJES)

EFFECTS OF OYSTER SHELL POWDER AND CHEMICAL TREATMENT ON THE MECHANICAL PROPERTIES OF EXPANDED POLYSTYRENE/SAWDUST COMPOSITE.

Authors

  • Antwi Yeboah Boniface Council for Scientific and Industrial Research (CSIR) – Institute of Industrial Research.
  • Korang Kofi James CSIR- Forestry Research Institute of Ghana.
  • Ampadu-Ameyaw Richard CSIR: Science and Technology Policy Research Institute
  • Seidu Haruna CSIR- Forestry Research Institute of Ghana.
  • Koranteng Joyce Council for Scientific and Industrial Research (CSIR) – Institute of Industrial Research.
  • Mohammed Abubakari CSIR: Science and Technology Policy Research Institute
  • Agyenim Boateng Francis Council for Scientific and Industrial Research (CSIR) – Institute of Industrial Research.

Abstract

The global plastic waste menace has evolved over the years and has contributed to increased pollution rates. The lack of alternative uses for plastic waste results in mismanagement and landfilling. Hence, it is imperative that the circularity of the plastic value chain be investigated, and a strategy to close the loop be determined. Thus, we seek to develop a plastic/sawdust composite from expanded polystyrene and sawdust waste and explore the role of the sawdust fiber filler and oyster shell powder (OSP) additive in the enhancement of the composite’s physical and mechanical properties. The bulk density and water absorption of the composites were determined conventionally. The tensile strength, modulus of elasticity, and rupture were measured. The analyzed data indicate that different OSP loadings enhanced the physical and mechanical properties. The treatment of the sawdust enhanced the tensile strength more than the OSP loading, with the best performing composite being without OSP loadings. Therefore, the life cycle of polystyrene waste can be prolonged through the secondary use in plastic/ sawdust composite whose physical and mechanical properties can be enhanced by the addition of 0.5% or 0.7% OSP loadings and the tensile strength can be improved by the chemical treatment of sawdust fibers

Keywords:

Polystyrene, sawdust, polymer, plastic composite, oyster shell powder

Published

2024-12-12

DOI:

https://doi.org/10.5281/zenodo.14418025

Issue

Section

Articles

How to Cite

Yeboah Boniface, A., Kofi James, K., Ampadu-Ameyaw, R., Seidu , H., Koranteng , J., Mohammed , A., & Boateng Francis, A. (2024). EFFECTS OF OYSTER SHELL POWDER AND CHEMICAL TREATMENT ON THE MECHANICAL PROPERTIES OF EXPANDED POLYSTYRENE/SAWDUST COMPOSITE. Advanced Journal of Environmental Sciences (AJES), 15(12), 1–14. https://doi.org/10.5281/zenodo.14418025

References

Adeniyi, A. G., Abdulkareem, S. A., Odimayomi, K. P., Emenike, E. C., and Iwuozor, K. O. (2022). Production of thermally cured polystyrene composite reinforced with aluminum powder and clay. Environmental Challenges, 9, 100608. https://doi.org/10.1016/j.envc.2022.100608

Allaf, R. M., Albarahmieh, E., & Futian, M. (2020). Preparation of Sawdust-filled Recycled PET Composites via Solid-State Compounding. Processes, 8(1). https://doi.org/10.3390/pr8010100

Ambrosio, L., Carotenuto G, Nicolais L. (2016). Chapter 2 Composite Materials. W. Murphy, J. Black, and G. Hastings (Eds.), Handbook of Biomaterial Properties (pp. 205-259). Springer New York. https://doi.org/10.1007/978-1-4939-3305-1_18

Ashby, M. F. (2013). Chapter 15-Material profiles. In M. F. Ashby (Ed.), Materials and the Environment (Second Edition) (pp. 459-595). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-385971-6.00015-4

Bhaskar, K., Jayabalakrishnan, D., Vinoth Kumar, M., Sendilvelan, S., and Prabhahar, M. (2021). Analysis of the mechanical properties of wood plastic composite. Materials Today: Proceedings, 45, 5886-5891. https://doi.org/10.1016/j.matpr.2020.08.570

Chun, K. S., Subramaniam, V., Yeng, C. M., Meng, P. M., Ratnam, C. T., Yeow, T. K., & How, C. K. (2018). Wood-plastic composites made from post-used polystyrene foam and agricultural waste. Journal of Thermoplastic Composite Materials, 32(11), 1455-1466. https://doi.org/10.1177/0892705718799836

Egbo, M. K. (2021). A fundamental review of composite materials and their applications in biomedical engineering. Journal of King Saud University-Engineering Sciences, 33(8), 557-568. https://doi.org/10.1016/j.jksues.2020.07.007

Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., & Garnier, C. (2023). A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering 19, 101271. https://doi.org/10.1016/j.rineng.2023.101271

Farouq, R. (2022). Functionalized graphene–polystyrene composite, green synthesis and characterization. Scientific Reports, 12(1), 21757. https://doi.org/10.1038/s41598-022-26270-3

Gaidhani, A., Tribe, L., & Charpentier, P. (2023). Polystyrene carbon composite foam with enhanced insulation and fire retardance for a sustainable future: Critical review. Journal of Cellular Plastics, 59(5-6), 419-453. https://doi.org/10.1177/0021955X231215753

Gausepohl, H., & Nießner, N. (2001). Polystyrene and Styrene Copolymers. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology (pp. 7735-7741). Elsevier. https://doi.org/10.1016/B0-08-043152-6/01389-9

Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., and Elharfi, A. (2021). Polymer composite materials: A comprehensive review. Composite Structures, 262, 113640. https://doi.org/10.1016/j.compstruct.2021.113640

Hu, C., Zhong, D., & Li, S. (2023). A study on the effect of oyster shell powder on the mechanical properties of asphalt with multiple degrees of modification mechanism. Case Studies in Construction Materials, 18, e01786. https://doi.org/10.1016/j.cscm.2022.e01786

Huang, Z., Shanmugam, M., Liu, Z., Brookfield, A., Bennett, E. L., Guan, R., Vega Herrera, D. E., Lopez-Sanchez, J. A., Slater, A. G., McInnes, E. J. L., Qi, X., & Xiao, J. (2022). Chemical Recycling of Polystyrene to Valuable Chemicals via Selective Acid-Catalyzed Aerobic Oxidation under Visible Light. Journal of the American Chemical Society, 144(14), 6532-6542. https://doi.org/10.1021/jacs.2c01410

Jian, B., Mohrmann, S., Li, H., Li, Y., Ashraf, M., Zhou, J., and Zheng, X. (2022). A Review of the Flexural Properties of Wood-Plastic Composites. Polymers, 14(19). https://doi.org/10.3390/polym14193942

Kamel, S., Adel, A., El-Sakhawy, M., & Nagieb, Z. (2008). Mechanical properties and water absorption of low-density polyethylene/sawdust composites. Journal of Applied Polymer Science, 107, 1337-1342. https://doi.org/10.1002/app.26966

Khan, M. Z. R., Srivastava, S. K., & Gupta, M. K. (2019). Water absorption effect on the mechanical properties of hybrid wood particulates composites. Materials Research Express, 6(10), 105305. https://doi.org/10.1088/2053-1591/ab34c3

Kulmer, V., Jury, M., Wong, S., Kortschak, D. (2020). Global resource consumption effects of borderless climate change: The EU’s indirect vulnerability. Environmental and Sustainability Indicators, 8, 100071. https://doi.org/10.1016/j.indic.2020.100071

Liao, Y., Fan, J., Li, R., Da, B., Chen, D., & Zhang, Y. (2022). Influence of the use of oyster shell powder on the mechanical properties and durability of mortar. Advanced Powder Technology, 33(3), 103503. https://doi.org/10.1016/j.apt.2022.103503

Liao, Y., Wang, X., Wang, L., Yin, Z., Da, B., & Chen, D. (2022). Effect of oyster shell powder content on the properties of cement-metakaolin mortar. Case Studies in Construction Materials, 16, e01088. https://doi.org/10.1016/j.cscm.2022.e01088

Maiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., and Karim, N. (2022). Sustainable Fiber-Reinforced Composites: A Review. Advanced Sustainable Systems, 6(11), pp. 2200258. https://doi.org/10.1002/adsu.202200258

Moskalyuk, O. A., Belashov, A. V., Beltukov, Y. M., Ivan'kova, E. M., Popova, E. N., Semenova, I. V., Yelokhovsky, V. Y., & Yudin, V. E. (2020). Polystyrene-Based Nanocomposites with Different Fillers: Fabrication and Mechanical Properties. . Polymers, 12(11), 2457. https://doi.org/10.3390/polym12112457

Murugapoopathi, S., Ashwin Prabhu, G., Chandrasekar, G., Selvam, R., Gavaskar, T., & Sudhagar, S. (2023). Fabrication and Characterization of the Saw Dust Polymer Composite. Journal of The Institution of Engineers (India): Series D. https://doi.org/10.1007/s40033-023-00596-2

Ohijeagbon, I. O., Adeleke, A. A., Mustapha, V. T., Olorunmaiye, J. A., Okokpujie, I. P., and Ikubanni, P. P. (2020). Development and characterization of wood-polypropylene plastic-cement composite board. Case Studies in Construction Materials, 13, e00365. https://doi.org/10.1016/j.cscm.2020.e00365

Rahman K. S., Islam M. N., Rahman M. M., Hannan M. O., Dungani R. and Khalil H. P. S. A. (2013). Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties. SpringerPlus, 2(1), 629. https://doi.org/10.1186/2193-1801-2-629

Rajak, D. K., Pagar, D. D., Kumar, R., & Pruncu, C. I. (2019). The recent progress in reinforcement materials: a comprehensive overview of composite materials. Journal of Materials Research and Technology, 8(6), 6354-6374. https://doi.org/10.1016/j.jmrt.2019.09.068

Ramli, S. N. H., Mustapa, S. A. S., & Abdul Rashid, M. K. (2019). Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 136(20), 47529, doi:10.1002/app.47529

Reed, M. R., E. R. Belden, N. K. Kazantzis, M. T. Timko, and B. Castro-Dominguez, B. (2024). Thermodynamic and economic analysis of a deployable and scalable process for recovering monomer-grade styrene from waste polystyrene. Chemical Engineering Journal, 492, 152079. https://doi.org/10.1016/j.cej.2024.152079

Shah, A. U. R., Prabhakar, M. N., Wang, H., & Song, J. I. (2018). The influence of the particle size and surface treatment of the filler on the properties of oyster shell powder filled polypropylene composites. Polymer Composites, 39(7), 2420-2430. https://doi.org/10.1002/pc.24225

Shen, Y., Ren, L., Ma, H., Liu, X., Song, T., Liu, Q., Xue, M., Li, C., Shao, M., & Zhang, M. (2024). Fabrication and properties of biodegradable poly (butylene succinate) composites by regulating oyster shell powder dispersion using a silane coupling agent. Journal of Polymer Research, 31(7), 216. https://doi.org/10.1007/s10965-024-04072-7

Singha, A. S., & Rana, R. K. (2012). Natural fiber-reinforced polystyrene composites: Effects of fiber loading, fiber dimensions, and surface modification on mechanical properties. Materials & Design, 41, 289-297. https://doi.org/10.1016/j.matdes.2012.05.001

Sofina, E. A., and Islam, M. A. (2015). Production of mahogany sawdust-reinforced LDPE wood–plastic composites using statistical response surface methodology. Journal of Forestry Research, 26(2), 487-494. https://doi.org/10.1007/s11676-015-0031-2

Zhou, Z., Wang, Y., Sun, S., Wang, Y., & Xu, L. (2022). Preparation of a PVA/waste oyster shell powder composite as an efficient adsorbent of heavy metals from wastewater. Heliyon, 8(12), e11938. https://doi.org/10.1016/j.heliyon.2022.e11938

Author Contribution

Conceptualization, Boniface Antwi, James Korang, Haruna Seidu, Joyce Koranteng, and Abubakari Mohammed; Data curation, Boniface Antwi, James Korang, and Haruna Seidu; Formal analysis, Boniface Antwi, James Korang, and Haruna Seidu; Investigation, Abubakari Mohammed; Methodology, Boniface Antwi, James Korang, Richard Ameyaw, Haruna Seidu, Joyce Koranteng, and Abubakari Mohammed; Resources, Boniface Antwi, James Korang, and Francis Agyenim; Writing—original draft, Boniface Antwi and James Korang; Writing—review and editing, Boniface Antwi and James Korang.