EFFECTS OF OYSTER SHELL POWDER AND CHEMICAL TREATMENT ON THE MECHANICAL PROPERTIES OF EXPANDED POLYSTYRENE/SAWDUST COMPOSITE.
Abstract
The global plastic waste menace has evolved over the years and has contributed to increased pollution rates. The lack of alternative uses for plastic waste results in mismanagement and landfilling. Hence, it is imperative that the circularity of the plastic value chain be investigated, and a strategy to close the loop be determined. Thus, we seek to develop a plastic/sawdust composite from expanded polystyrene and sawdust waste and explore the role of the sawdust fiber filler and oyster shell powder (OSP) additive in the enhancement of the composite’s physical and mechanical properties. The bulk density and water absorption of the composites were determined conventionally. The tensile strength, modulus of elasticity, and rupture were measured. The analyzed data indicate that different OSP loadings enhanced the physical and mechanical properties. The treatment of the sawdust enhanced the tensile strength more than the OSP loading, with the best performing composite being without OSP loadings. Therefore, the life cycle of polystyrene waste can be prolonged through the secondary use in plastic/ sawdust composite whose physical and mechanical properties can be enhanced by the addition of 0.5% or 0.7% OSP loadings and the tensile strength can be improved by the chemical treatment of sawdust fibers
Keywords:
Polystyrene, sawdust, polymer, plastic composite, oyster shell powderDownloads
Published
DOI:
https://doi.org/10.5281/zenodo.14418025Issue
Section
How to Cite
License
Copyright (c) 2024 Antwi Yeboah Boniface, Korang Kofi James, Ampadu-Ameyaw Richard, Seidu Haruna, Koranteng Joyce, Mohammed Abubakari, Agyenim Boateng Francis

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Adeniyi, A. G., Abdulkareem, S. A., Odimayomi, K. P., Emenike, E. C., and Iwuozor, K. O. (2022). Production of thermally cured polystyrene composite reinforced with aluminum powder and clay. Environmental Challenges, 9, 100608. https://doi.org/10.1016/j.envc.2022.100608
Allaf, R. M., Albarahmieh, E., & Futian, M. (2020). Preparation of Sawdust-filled Recycled PET Composites via Solid-State Compounding. Processes, 8(1). https://doi.org/10.3390/pr8010100
Ambrosio, L., Carotenuto G, Nicolais L. (2016). Chapter 2 Composite Materials. W. Murphy, J. Black, and G. Hastings (Eds.), Handbook of Biomaterial Properties (pp. 205-259). Springer New York. https://doi.org/10.1007/978-1-4939-3305-1_18
Ashby, M. F. (2013). Chapter 15-Material profiles. In M. F. Ashby (Ed.), Materials and the Environment (Second Edition) (pp. 459-595). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-385971-6.00015-4
Bhaskar, K., Jayabalakrishnan, D., Vinoth Kumar, M., Sendilvelan, S., and Prabhahar, M. (2021). Analysis of the mechanical properties of wood plastic composite. Materials Today: Proceedings, 45, 5886-5891. https://doi.org/10.1016/j.matpr.2020.08.570
Chun, K. S., Subramaniam, V., Yeng, C. M., Meng, P. M., Ratnam, C. T., Yeow, T. K., & How, C. K. (2018). Wood-plastic composites made from post-used polystyrene foam and agricultural waste. Journal of Thermoplastic Composite Materials, 32(11), 1455-1466. https://doi.org/10.1177/0892705718799836
Egbo, M. K. (2021). A fundamental review of composite materials and their applications in biomedical engineering. Journal of King Saud University-Engineering Sciences, 33(8), 557-568. https://doi.org/10.1016/j.jksues.2020.07.007
Elfaleh, I., Abbassi, F., Habibi, M., Ahmad, F., Guedri, M., Nasri, M., & Garnier, C. (2023). A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering 19, 101271. https://doi.org/10.1016/j.rineng.2023.101271
Farouq, R. (2022). Functionalized graphene–polystyrene composite, green synthesis and characterization. Scientific Reports, 12(1), 21757. https://doi.org/10.1038/s41598-022-26270-3
Gaidhani, A., Tribe, L., & Charpentier, P. (2023). Polystyrene carbon composite foam with enhanced insulation and fire retardance for a sustainable future: Critical review. Journal of Cellular Plastics, 59(5-6), 419-453. https://doi.org/10.1177/0021955X231215753
Gausepohl, H., & Nießner, N. (2001). Polystyrene and Styrene Copolymers. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology (pp. 7735-7741). Elsevier. https://doi.org/10.1016/B0-08-043152-6/01389-9
Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., and Elharfi, A. (2021). Polymer composite materials: A comprehensive review. Composite Structures, 262, 113640. https://doi.org/10.1016/j.compstruct.2021.113640
Hu, C., Zhong, D., & Li, S. (2023). A study on the effect of oyster shell powder on the mechanical properties of asphalt with multiple degrees of modification mechanism. Case Studies in Construction Materials, 18, e01786. https://doi.org/10.1016/j.cscm.2022.e01786
Huang, Z., Shanmugam, M., Liu, Z., Brookfield, A., Bennett, E. L., Guan, R., Vega Herrera, D. E., Lopez-Sanchez, J. A., Slater, A. G., McInnes, E. J. L., Qi, X., & Xiao, J. (2022). Chemical Recycling of Polystyrene to Valuable Chemicals via Selective Acid-Catalyzed Aerobic Oxidation under Visible Light. Journal of the American Chemical Society, 144(14), 6532-6542. https://doi.org/10.1021/jacs.2c01410
Jian, B., Mohrmann, S., Li, H., Li, Y., Ashraf, M., Zhou, J., and Zheng, X. (2022). A Review of the Flexural Properties of Wood-Plastic Composites. Polymers, 14(19). https://doi.org/10.3390/polym14193942
Kamel, S., Adel, A., El-Sakhawy, M., & Nagieb, Z. (2008). Mechanical properties and water absorption of low-density polyethylene/sawdust composites. Journal of Applied Polymer Science, 107, 1337-1342. https://doi.org/10.1002/app.26966
Khan, M. Z. R., Srivastava, S. K., & Gupta, M. K. (2019). Water absorption effect on the mechanical properties of hybrid wood particulates composites. Materials Research Express, 6(10), 105305. https://doi.org/10.1088/2053-1591/ab34c3
Kulmer, V., Jury, M., Wong, S., Kortschak, D. (2020). Global resource consumption effects of borderless climate change: The EU’s indirect vulnerability. Environmental and Sustainability Indicators, 8, 100071. https://doi.org/10.1016/j.indic.2020.100071
Liao, Y., Fan, J., Li, R., Da, B., Chen, D., & Zhang, Y. (2022). Influence of the use of oyster shell powder on the mechanical properties and durability of mortar. Advanced Powder Technology, 33(3), 103503. https://doi.org/10.1016/j.apt.2022.103503
Liao, Y., Wang, X., Wang, L., Yin, Z., Da, B., & Chen, D. (2022). Effect of oyster shell powder content on the properties of cement-metakaolin mortar. Case Studies in Construction Materials, 16, e01088. https://doi.org/10.1016/j.cscm.2022.e01088
Maiti, S., Islam, M. R., Uddin, M. A., Afroj, S., Eichhorn, S. J., and Karim, N. (2022). Sustainable Fiber-Reinforced Composites: A Review. Advanced Sustainable Systems, 6(11), pp. 2200258. https://doi.org/10.1002/adsu.202200258
Moskalyuk, O. A., Belashov, A. V., Beltukov, Y. M., Ivan'kova, E. M., Popova, E. N., Semenova, I. V., Yelokhovsky, V. Y., & Yudin, V. E. (2020). Polystyrene-Based Nanocomposites with Different Fillers: Fabrication and Mechanical Properties. . Polymers, 12(11), 2457. https://doi.org/10.3390/polym12112457
Murugapoopathi, S., Ashwin Prabhu, G., Chandrasekar, G., Selvam, R., Gavaskar, T., & Sudhagar, S. (2023). Fabrication and Characterization of the Saw Dust Polymer Composite. Journal of The Institution of Engineers (India): Series D. https://doi.org/10.1007/s40033-023-00596-2
Ohijeagbon, I. O., Adeleke, A. A., Mustapha, V. T., Olorunmaiye, J. A., Okokpujie, I. P., and Ikubanni, P. P. (2020). Development and characterization of wood-polypropylene plastic-cement composite board. Case Studies in Construction Materials, 13, e00365. https://doi.org/10.1016/j.cscm.2020.e00365
Rahman K. S., Islam M. N., Rahman M. M., Hannan M. O., Dungani R. and Khalil H. P. S. A. (2013). Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties. SpringerPlus, 2(1), 629. https://doi.org/10.1186/2193-1801-2-629
Rajak, D. K., Pagar, D. D., Kumar, R., & Pruncu, C. I. (2019). The recent progress in reinforcement materials: a comprehensive overview of composite materials. Journal of Materials Research and Technology, 8(6), 6354-6374. https://doi.org/10.1016/j.jmrt.2019.09.068
Ramli, S. N. H., Mustapa, S. A. S., & Abdul Rashid, M. K. (2019). Application of expanded polystyrene (EPS) in buildings and constructions: A review. Journal of Applied Polymer Science, 136(20), 47529, doi:10.1002/app.47529
Reed, M. R., E. R. Belden, N. K. Kazantzis, M. T. Timko, and B. Castro-Dominguez, B. (2024). Thermodynamic and economic analysis of a deployable and scalable process for recovering monomer-grade styrene from waste polystyrene. Chemical Engineering Journal, 492, 152079. https://doi.org/10.1016/j.cej.2024.152079
Shah, A. U. R., Prabhakar, M. N., Wang, H., & Song, J. I. (2018). The influence of the particle size and surface treatment of the filler on the properties of oyster shell powder filled polypropylene composites. Polymer Composites, 39(7), 2420-2430. https://doi.org/10.1002/pc.24225
Shen, Y., Ren, L., Ma, H., Liu, X., Song, T., Liu, Q., Xue, M., Li, C., Shao, M., & Zhang, M. (2024). Fabrication and properties of biodegradable poly (butylene succinate) composites by regulating oyster shell powder dispersion using a silane coupling agent. Journal of Polymer Research, 31(7), 216. https://doi.org/10.1007/s10965-024-04072-7
Singha, A. S., & Rana, R. K. (2012). Natural fiber-reinforced polystyrene composites: Effects of fiber loading, fiber dimensions, and surface modification on mechanical properties. Materials & Design, 41, 289-297. https://doi.org/10.1016/j.matdes.2012.05.001
Sofina, E. A., and Islam, M. A. (2015). Production of mahogany sawdust-reinforced LDPE wood–plastic composites using statistical response surface methodology. Journal of Forestry Research, 26(2), 487-494. https://doi.org/10.1007/s11676-015-0031-2
Zhou, Z., Wang, Y., Sun, S., Wang, Y., & Xu, L. (2022). Preparation of a PVA/waste oyster shell powder composite as an efficient adsorbent of heavy metals from wastewater. Heliyon, 8(12), e11938. https://doi.org/10.1016/j.heliyon.2022.e11938
Author Contribution
Conceptualization, Boniface Antwi, James Korang, Haruna Seidu, Joyce Koranteng, and Abubakari Mohammed; Data curation, Boniface Antwi, James Korang, and Haruna Seidu; Formal analysis, Boniface Antwi, James Korang, and Haruna Seidu; Investigation, Abubakari Mohammed; Methodology, Boniface Antwi, James Korang, Richard Ameyaw, Haruna Seidu, Joyce Koranteng, and Abubakari Mohammed; Resources, Boniface Antwi, James Korang, and Francis Agyenim; Writing—original draft, Boniface Antwi and James Korang; Writing—review and editing, Boniface Antwi and James Korang.