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 This study investigates the impact of the COVID-19 pandemic on 

financial market volatility using daily time series data of Bitcoin, the 

EUR, the S&P 500, Gold, Crude Oil, and Sugar from November 2018 

to May 2023. The primary objective is to analyse volatility dynamics 

and identify the most suitable model for capturing these trends. 

Utilising GARCH (1, 1), GJR-GARCH (1, 1), and EGARCH (1, 1) 

models, this study examines the persistence, asymmetry, and influence 

of pandemic-related shocks on market volatility. The findings reveal 

high volatility persistence across financial markets, with significant 

positive asymmetric behaviour observed in Crude Oil and the S&P 500 

index. EGARCH emerged as the most effective model for pre-

pandemic volatility, while all GARCH models captured pandemic-

induced volatilities effectively. The study concludes that the COVID-

19 pandemic amplified financial market turbulence, emphasising the 

need for robust risk management strategies. Policymakers and investors 

are advised to prioritise portfolio diversification and leverage advanced 

econometric models to effectively navigate crises. The 

recommendations include integrating dynamic risk management 

frameworks and stress-testing mechanisms to enhance market 

resilience. This research contributes to the growing body of knowledge 

on the interplay between global crises and financial market behaviour, 

offering valuable insights for mitigating future uncertainties. 
 

 

1. Introduction 

The emergence of the COVID-19 pandemic in late 2019, precipitated by the novel coronavirus SARS-CoV-2, 

instigated a seismic upheaval across global economies. The contagion swiftly evolved into a formidable health 

crisis, unfurling unprecedented disruptions across various economic sectors (Maital and Barzani, 2020). One of 

the most pronounced impacts of this pandemic was witnessed in financial markets, where uncertainty and fear 
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proliferated rapidly, triggering extreme volatility (McKibbin and Fernando, 2020). In response to the outbreak, 

nations worldwide swiftly implemented stringent policies, including travel restrictions and quarantine measures, 

alongside the cancellation of cultural and sporting events (Ozili and Arun, 2020). These actions, while essential 

for public health, substantially curtailed economic activities on a global scale, contributing to a climate of 

heightened uncertainty (Amankwah-Amoah et al., 2021). 

Empirical studies have underscored the profound and lasting repercussions of the COVID-19 pandemic on 

economies, characterised by an elevated risk of business failures and surging unemployment rates (Holder et al., 

2021). Financial markets, in particular, experienced heightened volatility and interconnectedness, intensified by 

speculative trading activities by international investors (Montenovo et al., 2020). The resulting speculative bubble 

and subsequent crashes inflicted significant losses on investors worldwide, amplifying the prevailing economic 

turmoil (Aslam et al., 2020b). 

Moreover, the pandemic engendered a pervasive sense of fear and risk among investors, altering their behaviour 

and worsening market volatility (Zhang and Hamori, 2021). Studies have demonstrated the pandemic’s 

deleterious effects on various financial markets, with stock markets bearing the brunt of the downturn (Alfaro et 

al., 2020). Companies across different sectors, particularly those in China and the United States, experienced 

substantial declines in stock returns attributable to COVID-19 (Al-Awadhi et al., 2020). 

The adverse impact of the pandemic reverberated across international equity markets, with countries like 

Singapore, Japan, and Korea witnessing significant downturns in equity values (Zhang et al., 2020). Furthermore, 

empirical analyses utilising GARCH family models have shed light on the dynamics of market volatility during 

the pandemic, highlighting its persistence and asymmetry in response to negative shocks (He et al., 2020). 

Volatility, a critical parameter in financial models, assumes heightened significance during periods of market 

uncertainty, such as the COVID-19 pandemic (Budiarso et al., 2020). The magnitude of volatility reflects the 

degree of uncertainty surrounding asset price fluctuations, with higher volatility signaling increased market 

turbulence and vice versa (Ortmann et al., 2020). Notably, financial time series data exhibit distinct characteristics 

necessitating sophisticated modelling approaches, such as GARCH models, to capture the evolving volatility 

patterns accurately (Rastogi, 2014). 

The GARCH family of models, comprising GARCH (1, 1), GJR-GARCH (1, 1), and EGARCH (1, 1), has 

emerged as the gold standard for modelling financial market volatility (Brooks and Rew, 2002). These models 

offer nuanced insights into volatility dynamics, considering factors like asymmetric responses to shocks and 

persistence of volatility clusters (Aslam et al., 2022). However, the existing literature on market volatility during 

the COVID-19 pandemic remains limited, warranting further investigation into the efficacy of GARCH models 

in capturing evolving volatility patterns across different financial markets. 

Hence, this study aims to fill this gap by analysing the volatility of six major financial markets—Bitcoin, EUR, 

S&P 500, Gold, Crude Oil, and Sugar—during the COVID-19 pandemic using GARCH family models. By 

applying these models, the study seeks to identify the most suitable model for capturing market volatility and 

assess the impact of the pandemic on volatility dynamics across the selected financial assets. 

Through a comprehensive analysis of market volatility and its determinants during the pandemic, this study 

endeavours to provide valuable insights for investors and policymakers navigating the tumultuous financial 

landscape precipitated by COVID-19 (Kodres, 2020). Ultimately, a deeper understanding of the interplay between 

the pandemic and financial market volatility is crucial for devising effective risk management strategies and 

informed investment decisions in an increasingly uncertain global environment. 
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2. GARCH Models 

GARCH models, or Generalised Autoregressive Conditional Heteroskedasticity models, are widely used in 

financial econometrics to model and forecast time-varying volatility in financial returns. Engle (1982) introduced 

the concept of autoregressive conditional heteroskedasticity (ARCH) to capture the clustering of volatility in 

financial time series data. ARCH models allow the conditional variance of a financial asset’s returns to be 

modelled as a function of past squared returns. Bollerslev (1986) extended the ARCH framework to the 

Generalised Autoregressive Conditional Heteroskedasticity (GARCH) model, which incorporates the lagged 

values of both returns and conditional variances in the volatility equation. 

The GARCH (1, 1) model, proposed by Bollerslev (1986), is one of the most commonly used specifications in 

the GARCH family of models. It models the conditional variance of returns as a linear combination of lagged 

squared returns and lagged conditional variances. The GARCH (1, 1) model allows for asymmetry in the response 

of volatility to positive and negative shocks, capturing the phenomenon of volatility clustering observed in 

financial time series data. 

In addition to the standard GARCH (1, 1) model, several extensions have been proposed to capture specific 

features of financial market data. The GJR-GARCH (1, 1) model, introduced by Glosten, Jagannathan, and Runkle 

(1993), adds an additional parameter to the GARCH model to capture the asymmetry in the response of volatility 

to negative shocks. This allows for a more flexible modelling of the volatility process, particularly during periods 

of market stress. 

Another widely used extension of the GARCH model is the Exponential GARCH (EGARCH) model, introduced 

by Nelson (1991). The EGARCH (1, 1) model allows the conditional variance to be modelled as a nonlinear 

function of past returns, capturing the asymmetric response of volatility to positive and negative shocks. Unlike 

the GARCH model, the EGARCH model allows for the possibility of leverage effects, where negative shocks 

have a larger impact on volatility than positive shocks of the same magnitude. 

Mathematically, the GARCH (1, 1) model can be expressed as 

2 2 2

1 1

p q

t i t j t j

i j

      

 

   
 

The GJR-GARCH (1, 1) model extends the GARCH (1, 1) model by introducing an additional parameter γγ to 

capture the asymmetry in the response of volatility to negative shocks: 

2 2 2 2

1 1 1 1 1t t i t i t tI            
 

The EGARCH (1, 1) model can be expressed as 

1 1 1log ( 1) / / logt t t th h          
 

These models provide a framework for analysing and forecasting the dynamics of volatility in financial markets, 

allowing investors and policymakers to better understand and manage risk in their investment decisions. 

Nelson (1991) introduced the Exponential GARCH (EGARCH) model as an extension of the GARCH framework 

to address some limitations, particularly in capturing the asymmetric response of volatility to shocks. The 

EGARCH model allows the conditional variance to be expressed as a nonlinear function of past returns, enabling 

it to capture asymmetries more effectively than the standard GARCH model. This nonlinearity is achieved by 

taking the logarithm of the conditional variance, which relaxes the positive constraints among the model 

parameters. 
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The EGARCH model’s ability to capture volatility persistence shocks makes it particularly suitable for modelling 

financial time series data during periods of extreme market conditions, such as the COVID-19 pandemic. During 

such periods, the financial markets experience heightened uncertainty and variability, leading to increased risk 

and fluctuations in returns. The EGARCH model’s flexibility in capturing asymmetric responses to shocks allows 

it to provide more accurate forecasts of volatility under such conditions. 

3. Research Design 

The research design will entail investigating the impact of the COVID-19 pandemic on market volatility and 

asymmetric behaviour across Bitcoin, the EUR, the S&P 500 index, Gold, Crude Oil, and Sugar. Utilising 

GARCH (1, 1), GJR-GARCH (1, 1), and EGARCH (1, 1) econometric models, daily time series returns data from 

2018, to 2021, will be analysed. The design aims to systematically examine the persistence of volatility in 

financial markets during the pandemic period, particularly focusing on the observed positive asymmetric 

behaviour in Crude Oil and the S&P 500 index. Moreover, it will seek to evaluate the suitability of the EGARCH 

model in capturing pre-pandemic volatilities compared to other GARCH variants.  

4. Technique for Data Analysis  

The technique employed in this study involves the utilisation of GARCH models to analyse the impact of the 

COVID-19 pandemic on financial market volatility. The GARCH (Generalised Autoregressive Conditional 

Heteroskedasticity) model, introduced by Bollerslev in 1986, is used to model the volatility of financial time 

series. Specifically, the GARCH (1, 1) model is recommended to model the conditional volatility of market 

returns. This model is represented as 

 

where; 

σt2 is the conditional variance at time t. 

ω is the constant term. 

α is the coefficient of the lagged squared error term 

β is the coefficient of the lagged conditional variance 

ε is the squared error term times 

This model allows capturing dynamic volatility phenomena and clustering in financial returns volatility, which is 

essential for understanding the impact of the COVID-19 pandemic on financial markets. 

The EGARCH (Exponential Generalised Autoregressive Conditional Heteroskedasticity) model is indeed an 

extension of the traditional GARCH model. It is designed to capture the asymmetry often observed in financial 

time series data, where volatility tends to respond differently to positive and negative shocks. 

The EGARCH (1,1) model equation can be expressed as 

2 21
1 1

1

| |
( ) ( ) log( )t

t t t

t

r
Log r     




 



   
 

Where; 

2

t  is the conditional variance at time t 

1tr   is the return at time t-1 

, , and arethe parametersestimated fromthedata     

2 2 2

1 1(1,1) : t t tGARCH       
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The additional term 1tr    captures the leverage effect, where negative returns tend to have a larger impact on 

volatility than positive returns of the same magnitude. This reflects investors’ asymmetric reactions to positive 

and negative news. 

By incorporating this asymmetry, the EGARCH model provides a more flexible framework for modelling 

financial time series data, allowing it to better capture the complex dynamics of volatility. 

Moreover, the GJR-GARCH model, standing for Generalised Autoregressive Conditional Heteroskedasticity 

model with Glosten, Jagannathan, and Runkle extensions, is widely employed in financial analysis to study 

asymmetric market behaviour. This model specifically zooms in on the leverage effect, a phenomenon in which 

negative returns exert a more pronounced influence than positive returns. By leveraging the GJR-GARCH (1, 1) 

model equation, which includes components for the conditional variance, a constant term, squared returns, and a 

dummy variable to differentiate between positive and negative shocks, analysts gain deeper insights into the 

dynamics of financial markets. This modelling approach proves instrumental in capturing the nuances of market 

volatility and risk, thus aiding in more informed decision-making processes within the realm of finance. 

These mathematical expressions within the GARCH, EGARCH, and GJR-GARCH models provide a framework 

for understanding and modelling financial market volatility during the COVID-19 pandemic, capturing aspects 

of persistence, asymmetry, and leverage effects in market returns. 

Augmented-Dickey Fuller unit root test 

A series is said to be weakly or covariance stationary if its statistical properties such as 

Mean, variance, autocovariance, etc., are all constant over time. In this study, we employ 

Augmented Dickey Fuller (ADF) unit root test according to Dickey and Fuller (1979). The 

The augmented Dickey-Fuller (ADF) unit root test constructs a parametric correction for 

Higher-order correlation by assuming that the series follows an AR (p) process: 

𝑟𝑡 = 𝜃1𝑟𝑡−1 + 𝜃2𝑟𝑡−2 + ⋯ + 𝜃𝑝𝑟𝑡−𝑝 + 𝜀𝑡 (3.9) 

If 𝐻0: 𝜃∗ = against the alternative 𝐻1: 𝜃∗ <then 𝑟𝑡 contains a unit root. To test the null hypothesis, the ADF test 

is evaluated using the 𝑡 − statistics: 

*

( *)
t

SE







 

where 𝜃∗ is the estimate of 𝜃, and SE (𝜃∗) is the coefficient standard error. 

Heteroskedasticity test 

To test for heteroskedasticity or the ARCH effect in the residuals of cryptocurrency returns, 

We apply the Lagrange Multiplier (LM) test according to Engle (1982). The procedure of 

performing the Engle’s LM test is to first obtain the residuals 𝑒𝑡 from an ordinarleasttm squares regression of the 

conditional mean equation, which could be an AR, MA or 

ARMA model that best fits the data. For an ARMA (1,1) model, the conditional mean 

Equation is specified as 

𝑟𝑡 = 𝜙1𝑟𝑡−1 + 𝜀𝑡 + 𝜃1𝜀𝑡−1        (3.11) 

where 𝑟𝑡 is the return series, 𝜙1 and 𝜃1 are the coefficients of the AR and terms, respectively terms 

While 𝜀𝑡 is the random error term. Having obtained the residuals 𝑒𝑡, we then regress the 

Squared residuals on a constant and 𝑞 lags such as in the following equation: 

2 2 2 2 2

1 1 2 2 3 3 ...t o t t t q t q te e e e e v             
                      (3.12) 
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The null hypothesis of no ARCH effect up to lag 𝑞 is then formulated as follows: 

𝐻0: 𝛼1 = 𝛼2 = 𝛼3 = ⋯ = 𝛼𝑞 versus the alternative 𝐻1: 𝛼𝑖 > 0 for at least one 𝑖 = 

1,2,3, …, 𝑞. 

There are two test statistics for the joint significance of the q-lagged squared residuals. 

The F-statistic and the number of observations times R-squared (𝑛𝑅2) from the 

regression. The F-statistic is estimated as 

1

1

2 2 2 2

1 0

1 1 1

/

( 2 1)

1
, ( )

o

T T T

t t

t q t q t

SSR SSR q
F

SSR n q

where SSR e SSR r r and r r
n    




 

     
   (3.13) 

𝑒 ̂𝑡 is the residual obtained from the least squares linear regression, 𝑟 ̅ is the sample mean of 𝑟𝑡 2. The 𝑛𝑅2 is 

evaluated against 𝜒2(𝑞) distribution with 𝑞 degrees of freedom under 𝐻0. The decision is to reject the null 

hypothesis of no ARCH effect in the residuals of returns if the p-values of the F-statistic and 𝑛𝑅2 statistic are less 

than 𝛼 = 0.05 

Ljung-Box Q-statistics test for serial correlation 

The Ljung-Box Q-statistic test is used for investigating the presence of serial correlation or autocorrelation in a 

time series. The test checks the following pair of hypotheses: 

𝐻0: 𝜌𝑘,1 = 𝜌𝑘,2 = ⋯ 𝜌𝑘, 𝑇 = 0 (all lags’ correlations are zero) 

𝐻1: 𝜌𝑘,1 ≠ 𝜌𝑘,2 ≠ ⋯ 𝜌𝑘, 𝑇 ≠ 0 (there is at least one lag with non-zero correlation). 

The test statistics is given by 

( )

1
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h
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Denotes the autocorrelation estimate of squared standardized residuals at 𝑘 lags. where? is the sample size, 𝑄 is 

the sample autocorrelation at lag 𝑘. theoretically, the Q-statistic is asymptotically Chsquaredre distributed with 

degrees of freedom equal to the number of autocorrelations. We reject 𝐻0 if p-value is less than 𝛼 = 0.05 level of 

significance (Ljung and Box, 1978). 

5.  Model Specification  

The following conditional heteroskedastic time series models are specified for this study. 

6. The autoregressive conditional heteroskedasticity (ARCH) model 

The Autoregressive Conditional Heteroskedasticity model of order 𝑞, ARCH (𝑞) proposed by Engle (1982) 

without dummy my variable is given by: 

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡          (3.15) 

𝜀𝑡 = 𝜎𝑡𝑒𝑡; 𝑒𝑡~𝑁 (0,1)         (3.16) 

2 2 2 2 2

1 1 2 2

1

...
q

t t t t q i t i

i

q             



      
                             (3.17) 

where t  is the innovation/shock at day 𝑡 and it follows the heteroskedastic error process, 𝜎2𝑡 is the volatility at 

day 𝑡 (conditional variance),  
2

1t  is the squared innovation at day 𝑡 – I, 𝜔 is a constant term. A sufficient condition 
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for the conditional variance to be positive is that the parameters of the model should satisfy the following 

constraints: 𝜔 > 0, 𝛼𝑖 ≥ 0 for 𝑖 > 0. The ARCH (1) process is defined by the following equations:  

𝜎2𝑡 = 𝜔 + 
2

1 1t                                     (3.18) 

where 𝜔 > 0 and 𝛼1 ≥ 0. As the persistence (as measured by 𝛼1) increases towards unity, the process explodes. 

7. The generalized autoregressive conditional heteroskedasticity (GARCH) model 

Bollerslev (1986) extended the ARCH model of Engle (1982) to Generalised Autoregressive Conditional 

Heteroskedasticity (GARCH) model. A GARCH (p, q) process is specified as 

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡                     (3.19) 

𝜀𝑡 = 𝜎𝑡𝑒𝑡;  𝑒𝑡~𝑁(0, 1)          (3.20) 

𝜎𝑡 2 = 𝜔 

2

1

1 1

q p

i t i

i j

j  

 

 
                                                 (3.21) 

where 𝜀𝑡 is the innovation/shock at day 𝑡 and it follow the heteroskedastic error process, 
2

t  is the volatility at 

day 𝑡 (conditional variance), 
2

t i   is squared innovation at day 𝑡 − 𝑖, 𝜔 is a constant term, 𝜇𝑡 can be any adapted 

model for the conditional mean; 𝑝 is the order of the autoregressive GARCH term; 𝑞 is the order of the moving 

average ARCH term . 

The GARCH (1,1) model is capable of capturing all the volatilities in any return series and is 

Defined as 

𝜎𝑡2 = 𝜔 + 
2 2

1 1 1 1t t                              (3.22) 

The requirements for stationarity in the GARCH (1, 1) model are that 𝛼1 + 𝛽1 < 1, 𝛼1 ≥ 0, 

𝛽1 ≥ 0 and 𝜔 > 0. 

The mean or expected value of the GARCH (1,1) model is given as 

2

1 1

( )
(1 )

tE



 


                 (3.23) 

Under the stationarity assumptions and finite-fourth moments, the kurtosis (𝑔2) of 

The GARCH (1,1) process is given by 

4

1 1
2 2 2
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( ) 1
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( ) 1 2

t

t
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g

E

  

  

 
 

 (3.24) 

The first-order autocorrelation function of the GARCH (1,1) process is approximately 

𝜌1 ≈ 𝛼1 + 1 3⁄ 𝛽1 (3.25) 

and the autocorrelation function at lag 𝑘 is approximately 

𝜌𝑘 ≈ [𝛼1 + 1 /3 𝛽1] [𝛼1 + 𝛽1] 𝑘−1.            (3.24) 

From this, it is clear that the autocorrelation function still decreases exponentially (Bollerslev, 1988) 

Modelling mean reversion using the GARCH (1,1) model 

Although excessive volatility may be experienced in the financial markets from time to 

Time, it will eventually settle down to a long-run level. Given that the long level of 

variance 𝜀𝑡 for stationary GARCH (1,1) model is  
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2

1 1(1 )




 


   

In this case, volatility is always pulled towards this long-run level by rewriting the ARMA 

representation 

2 2

1 1 1 1 1( )t t t t              (3.28) 

as follows 
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 
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   
     

                 (3.25) 

If the above equation is iterated 𝑘 times, it can be shown that 

2 2

1 1

1 1 1 1

( ) ( ) ( )
(1 ) (1 )

k

t K t t k

 
    

   
     

     

where 𝜂𝑡 is the moving average process since (𝛼1 + 𝛽1) < 1 the stationary GARCH (1,1) model, (𝛼1 + 𝛽1)𝑘 → 0 

as 𝑘 → ∞. Although at time 𝑡 there may be a large deviation between 
2

t and the long-run variance 
2

t  = 𝜔/(1 − 

𝜎1 − 𝛽1) will approach zero on average as 𝑘 gets large. That is, the volatility mean reverts to its long-run level 

𝜔/(1 − 𝜎1 − 𝛽1). In contrast, if 𝜔/ (1 − 𝜎1 − 𝛽1) >1 and the GARCH model is non-stationary, the volatility will 

eventually explode to infinity as 𝑘 → ∞. Similar arguments can be easily constructed for the GARCH (p, q) model 

(Kuhe & Audu, 2016). 

Model order selection using information criteria 

GARCH model order and error distribution selection involves selecting a model order that minimizes one or more 

information criteria evaluated over a range of model orders. In this work, we employed the Schwarz information 

criterion (SIC) due to (Schwarz, 1978). 

The criterion is given as 

𝑆𝐼𝐶(𝑃) = −2 ln(𝐿) + 𝑃𝑙𝑛(𝑇)        (3.26) 

where 𝑃 is the number of free parameters to be estimated in the mode and, T is the number of 

observations and L is the maximum likelihood function for the estimated model defined 

by: 
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  

 
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                    (3.28) 

Thus, given a set of estimated GARCH models for a given set of data, the preferred 

model is the one with the minimum information criterion and the highest log likelihood 

value. 

8.  Error distribution for modelling volatility 

To estimate the time-varying volatility in the cryptocurrency returns and account for the 

excess kurtosis and fat tails that are present in the residuals of the return series, we model 

the error term in the GARCH models with normal (Gaussian) distribution, Student’s t- 

Distribution, and Generalised Error Distribution (GED). These distributions are 
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appropriate to capture the excess kurtosis and the skewness in the residuals return series 

(Greene, 2010). 

1. Normal (Gaussian) Distribution (ND): The normal distribution is given by 
2
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The normal distribution to the log likelihood for observation 𝑡 is given as: 
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(ii) Student’s t-Distribution (STD): The student’s t-distribution is given as: 
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For student’s 𝑡 −distribution, the log-likelihood contributions are of the form: 
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where 𝛤(. ) is the gamma function. This distribution is always fat-tailed and produces 

Better fit than the normal distribution for most asset return series. The degree of freedom 

𝑣 > 2 controls the tail behaviour. The distribution is only well defined if 𝑣 > 2becausee the 

variance of a student’s-𝑡 with 𝑣 ≤ 2 is infinite, that is, the 𝑡 −distribution approaches the 

normal distribution as 𝑣 → ∞. 

9. Estimation of the GARCH models 

There are many methods used in estimating the parameters of volatility models, but in this work, we shall restrict 

ourselves to the maximum likelihood estimation and quasi-maximum likelihood estimation. 

We implemented the maximum likelihood method with Gaussian errors and quasi-maximum likelihood 

estimation with non-Gaussian errors (Student-t distribution and Generalised Error Distribution (GED)) in this 

research work. This helps us to provide a general framework for the issue of estimating (GARCH-type models 

and requires the need for the regression model with conditionally heteroskedastic error terms to be investigated. 

10. Maximum likelihood estimation of the symmetric GARCH models 

Estimating the ARCH and GARCH models using Maximum likelihood estimation is more efficient in the sense 

that the estimated parameters converge to their population counterparts at a faster rate (Greene, 2010). 

Consider a simple GARCH (1,1) specification: 

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡; 𝜀𝑡 = 𝜎𝑡𝑒𝑡, 𝑒𝑡~𝑁 (0, 1) 

𝜎𝑡2 = 𝜔 + 𝛼1𝜀𝑡−1 2 + 𝛽1𝜎𝑡−1 

Since the errors are assumed to be conditionally i.i.d. normal, maximum likelihood is a natural choice to estimate 

the unknown parameters, 𝜽 which contain both the mean and variance parameters. The normal likelihood for the 

T independent variables is: 
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and the normal log-likelihood function is: 

𝑙(𝒓; 𝜽) = 
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If the mean is set to zero, the log-likelihood simplifies to 

𝑙(𝒓; 𝜽) (
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and is maximized by solving the first-order conditions. 
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which can be rewritten to provide some insight into the estimation of ARCH models, 
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This expression clarifies that the parameters of the volatility are chosen to make (
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These first-order conditions are not complete since 𝜔, 𝛼1, and 𝛽1, not 𝜎𝑡2 are the parameters of a GARCH (1,1) 

model and 

11.  Justification of the Method  

To justify the chosen method, the study will discuss the use of three measures of volatility: standard deviation, 

skewness, and kurtosis, with the standard deviation being the most commonly used measure. The study will also 

use the Jarque-Bera test to examine the goodness of fit for the distribution of returns, indicating the presence of 

fat-tail phenomena in the financial markets. 

The GARCH family of models is employed to account for dynamic volatility phenomena and volatility clustering 

in modelling financial returns volatility. The GARCH (1, 1) model is recommended for modelling the conditional 

volatility of market returns, as it is capable of capturing the volatile behaviour of financial assets during the 

pandemic. Additionally, the GJR-GARCH model is used to examine the asymmetric behaviour of financial 

market returns, specifically focusing on the leverage effect where investor reaction towards negative returns is 

more pronounced.  

In conclusion, the method chosen in the Study is justified based on the need to understand the dynamics of 

financial market volatility during the COVID-19 pandemic. By utilising GARCH models and analysing various 

measures of volatility, the study provides valuable insights into the behaviour of financial assets during crises, 
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which can be beneficial for investors and policymakers in constructing portfolios and strategizing for future 

economic scenarios. 

12. Data Presentation  

This Section presents the results of the data analysis of this study. The section particularly hinges on the 

presentation of the results of the Summary Statistics for the selected financial assets, graphical examination of 

the series, unit root test and heteroskedasticity test results.  

13.  Descriptive Statistics and Normality Measures of the Selected Financial Assets 

To understand the descriptive and distributional characteristics of the selected financial assets, summary statistics 

such as the daily mean and standard deviation as well as normality measures such as skewness, kurtosis, 

Minimum, maximum and Jarque-Bera statistics have been computed and presented in Table .1 

Table 1. Summary Statistics for the selected financial assets 

Particulars Bitcoin EUR S&P 500 Gold Crude Oil Sugar 

Whole period 

Mean 0.003875 0.000103 0.000712 0.000561 0.000503 0.000512181 

Standard 

Deviation 

0.046004 0.003986 0.015302 0.01076 0.046245 0.017879922 

Kurtosis 5.782102 4.008026 16.1689 5.736385 47.81848 1.605894798 

Skewness −0.379280 −0.385170 −1.03143 −0.15575 −2.74082 0.10688875 

Range 0.518336 0.042611 0.217335 0.10748 0.891307 0.155743422 

Minimum −0.315290 −0.028140 −0.12765 −0.05121 −0.57167 −0.078285363 

Maximum 0.203046 0.014467 0.089683 0.056266 0.319634 0.077458059 

Jarque-Bera Test 904.27 442.44 7078.9 877.35 61768 69.216 

Count 650 650 650 650 650 650 

Before COVID-19 

Mean 0.002273 0.000016 0.000231 0.000793 −0.00125 0.00002700 

Standard 

Deviation 

0.042580 0.003403 0.011625 0.008599 0.028384 0.01546058 

Kurtosis 3.685524 1.655074 9.873348 9.734605 31.4296 2.55831721 

Skewness 0.297774 0.294543 −0.966510 0.145929 −2.80747 0.48522149 

Range 0.362072 0.026953 0.127414 0.103186 0.41915 0.13021202 

Minimum −0.159030 −0.01261 −0.079010 −0.04877 −0.28221 −0.05275396 

Maximum 0.203046 0.014345 0.048403 0.054414 0.136944 0.07745805 

Jarque-Bera Test 181.3 39.815 1325.2 1240.6 13378 97.32 

Count 325 325 325 325 325 325 

During Covid 19 

Mean 0.005478 0.00019 0.001192 0.00033 0.002259 0.00099736 

Standard 

Deviation 

0.049205 0.004498 0.01826 0.012564 0.058924 0.02002169 

Kurtosis 6.920719 4.253854 14.05538 3.665246 34.35576 0.95215866 

Skewness −0.84048 −0.69099 −1.01749 −0.21382 −2.41754 −0.09999114 

Range 0.506817 0.042611 0.217335 0.10748 0.891307 0.14083676 

Minimum −0.31529 −0.02814 −0.12765 −0.05121 −0.57167 −0.07828536 

Maximum 0.191527 0.014467 0.089683 0.056266 0.319634 0.06255140 

Jarque-Bera Test 663.4 261.13 2642.5 177.05 15794 11.978 

Count 325 325 325 325 325 325 
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Table 1 shows the price trends and return fluctuations of the financial markets. From the analysis of the data, an 

extensive decline has been observed in the price of the S&P 500 index, Crude Oil, and Sugar in March 2020. 

Additionally, the price of Bitcoin experienced a massive shock in May 2021. The returns graphs also show a high 

level of fluctuations at the beginning of the COVID-19 pandemic. Bitcoin and crude oil showed a high level of 

volatility during COVID-19, ranging from −0.31 to 0.19 and −0.57 to 0.31, respectively. Moreover, the volatility 

clustering can be seen in the return’s graphs of the financial markets. 

14.  Time Plots of daily Selected Financial Markets  

The time plots of daily cryptocurrency prices presented in Figures 1 suggests that the series have means and 

variances that change with time and the presence of a trend indicating that the series are not covariance stationary. 

The time plots of the daily cryptocurrency log return series presented in Figures 2 suggests that the series have 

constant means and variances with the absence of a trend, indicating that they are covariance stationary. The time 

plots of the cryptocurrency log returns also indicate that some periods in the plots are more clustered than others 

as large changes in the digital returns tend to be followed by large changes and small changes are followed by 

small changes. This phenomenon is described as volatility clustering. Volatility clustering is more noticeable in 

Cardano (ADA), Binance (BNB), Ethereum (ETH), Ripple (XRP), Stellar (XLM), Polygon (MATIC), and 

Chainlink (LINK) cryptocurrency returns. 

Volatility clustering as one of the characteristic features of financial time series was first noticed in studies 

conducted independently by Mandelbrot (1963), Fama (1965) and Black (1976), when they observed the 

occurrence of large changes in stock prices being followed by large changes in stock prices of both positive and 

negative signs and the occurrence of small stock price changes being followed by periods of small changes in 

prices. Sequel to this result, numerous researchers, including Poterba and Summer (1986), Tse (1991), Najand 

(2002), Emenike and Aleke (2012) and Ezzat (2012), among others, have documented evidence in the literature 

proving that financial time series normally exhibit volatility clustering and leptokurtosis 

Figure 1. Price trends in the financial markets over the period of November 27, 2018 to May 21, 2023. 
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Figure 2. Returns fluctuations in the financial markets over the period of November 27, 2018 to May 21, 2023 

15. Data Analysis and Results 

This section looks at the data analysis and the results of the data analysis. 

16. Augmented Dickey–Fuller test results for the selected financial assets 

The Augmented Dickey–Fuller test results for the selected financial assets are computed and presented in table 2 

Particulars  BTC EUR S&P 500 Gold Crude Oil Sugar  

ADF Value −17.8 *** −16.68 *** −17.765 *** −18.078 *** −19.99 *** −17.373 *** 

 Probability Value 0.01  0.01  0.01 0.01 0.01  0.01  

Note: *** shows the 1% significance level 

Table 2 provides a comprehensive depiction of the outcomes derived from the Augmented Dickey–Fuller (ADF) 

test, a widely used method for assessing the stationarity of time series data. Notably, the ADF values presented 

therein indicate a profound significance at the 1% critical level across all assets scrutinised in the study. This 

statistical significance underscores a crucial finding: the returns series of the selected assets exhibit stationary 

characteristics, thereby yielding crucial insights into their underlying dynamics. Consequently, this empirical 

evidence both confirms and refutes the null hypothesis positing the existence of a unit root within the returns 

series, thus advancing our understanding of the fundamental properties governing asset price movements. 

Furthermore, the robustness of these results underscores the reliability and validity of the ADF test in discerning 

the stationarity properties of financial time series data. By demonstrating significant ADF values at a stringent 

critical level, Table 2 not only substantiates the stationary nature of the returns series but also underscores the 

efficacy of the chosen analytical framework. This validation carries profound implications for financial modelling 

and decision-making processes, as it provides stakeholders with actionable insights into the long-term behaviour 

of the selected assets. Consequently, these findings serve as a vital foundation for informed investment strategies 
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and risk management practices, empowering market participants to navigate the complexities of financial markets 

with heightened precision and confidence. 

17. Estimation of the GARCH Models  

Table 3: Show the results based on the GARCH models before the COVID-19 Pandemic March ( 2020). 

Asset Class Model µ ω α(ARCH) β 

(GAR

CH) 

α+β γ 

(Gam

ma), 

Log 

Likeli

hood 

AIC 

BTC GARCH 

(1, 1) 

GJR-

GARCH(1

,1) 

EGARCH 

(1, 1) 

0.001575 

0.001534 

0.001244 

0.000062 

0.000054 

-

0.174239

* 

0.124018* 

0.143439* 

0.036888 

0.8749

82*** 

0.8876

96*** 

0.9721

07*** 

0.999 

1.031

135 

1.008

995 

- 

-

0.0614

79 

0.2584

52***  

619.88

94 

620.10

43 

624.16

17 

−3.7778 

-3.7729 

-3.7979 

EUR/USD GARCH 

(1, 1) 

GJR-

GARCH(1

,1) 

EGARCH 

(1, 1) 

-0.000093 

0.00003 

0.000001 

0.000001 

0.000001 

-

1.058863

** 

0.076241 

0.118079** 

0.098288** 

0.8455

16*** 

0.8949

21*** 

0.9069

61*** 

0.921

757 

1.013 

1.005

249 

- 

-

0.1148

15 

0.1165

47*** 

1398.0

76 

139897 

1399.5

02 

 

-8.5666 

-8.566 

-85692 

S&P 500 GARCH 

(1, 1) 

GJR-

GARCH(1

,1) 

EGARCH 

(1, 1) 

0.001054 

0.000627 

0.000445 

0.000004 

0.000004

*** 

-

0.575678

** 

0.247109*** 

0 

-0.310019** 

0.7298

3*** 

0.7663

9*** 

0.9407

52*** 

0.976

939 

0.766

39 

0.630

733 

- 

0.3772

6*** 

0.0953

04*** 

1104.3

23 

1115.6

77 

1120.2

24 

-6.7589 

-6.8226 

-6.8506 

Gold GARCH 

(1, 1) 

GJR-

GARCH(1

,1) 

EGARCH 

(1, 1) 

0.000738 

0.000776 

0.000563 

0 

0 

-

3.918943

** 

0.002481 

0.009621 

-0.057158 

0.9964

7*** 

0.9998

03*** 

0.5920

84*** 

0.998

951 

1.009

424 

0.534

926 

- 

-

002108

2** 

0.4127

96*** 

1143.2

98 

1143.4

38 

1146.2

5 

-6.9988 

-6.9935 

-7.0108 

Crude Oil GARCH 

(1, 1) 

GJR-

GARCH(1

,1) 

EGARCH 

(1, 1) 

-0.000072 

-0-

000989 

-0.001059 

0.000043 

0.000015

*** 

-

0.178794

** 

0.1222254* 

0 

-0.14327*** 

0.8273

23*** 

0.9194

19*** 

0.9758

97*** 

0.949

577 

0.919

419 

0.832

627 

- 

0.1303

78*** 

0.0301

63** 

709.14

03 

795.79

55 

797.57

16 

-4.8255 

-4.8541 

-4.8651 

Sugar GARCH 

(1, 1) 

GJR-

GARCH(1

,1) 

EGARCH 

(1, 1) 

-0.00005 

-0.000144 

-0.00019 

0 

0.000052 

-1.69632* 

0 

0 

-0.12458* 

0.999*

** 

0.6781

75*** 

0.7980

2 *** 

0.999 

0.678

175 

0.673

44 

- 

0.2340

51* 

0.2266

7* 

906.48

32 

911.28

45 

911.06

19 

-5.5414 

-5.5648 

-5.5653 

Note: *** refers to the 1% Significance level, **refers to the 5% Significance level, and *refers to the 10% 

Significance level. 
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Table 4: Show the results based on the GARCH models during the COVID-19 Pandemic March to June ( 2021). 

Asset 

Class 

Model µ ω α(ARCH) β 

(GARCH

) 

α+β γ 

(Gamma), 

Log 

Likelih

ood 

AIC 

BTC GARCH 

(1, 1) 

GJR-

GARCH(

1,1) 

EGARCH 

(1, 1) 

0.0051

33 

0.0051

36 

0.0052

3 

0.00004

6 

0.00003

6 

- 0.067 

0.086228*

** 

0.096668*

** 

0.035923 

0.912772*

** 

0.919377*

** 

0.98845 

0.999 

1.0160

45 

1.0160

45 

- 

-0.033637 

0.191335*

** 

575.45

89 

575.67

74 

577.34

27 

-

3.5044 

-

3.4996 

-

3.5098 

EUR/U

SD 

GARCH 

(1, 1) 

GJR-

GARCH(

1,1) 

EGARCH 

(1, 1) 

0.0002

15 

0.0001

78 

0.0002

48 

0 

0 

-

0.7275*

* 

0.009999 

0.002145 

-0.023663 

0.986357*

** 

0.987274*

** 

0.933762*

** 

0.9963

56 

0.9894

19 

0.9100

99 

- 

0.012225 

0.136151*

** 

1309.7

44 

1310.4

2 

1311.0

29 

-8.023 

-8.021 

-

8.0248 

S&P 

500 

GARCH 

(1, 1) 

GJR-

GARCH(

1,1) 

EGARCH 

(1, 1) 

0.0013

18 

0.0010

23 

0.0008

02 

0.00000

7 

0.00000

8 

-

0.42321

2* 

0.21278**

* 

0.102173* 

-0.104427 

0.754481*

** 

0.765049*

** 

0.952725*

** 

0.9672

61 

0.8672

22 

0.8482

98 

- 

0.011201 

0.138397 

993.60

05 

995.30

24 

993.26

19 

-

6.0775 

-

6.0819 

-

6.0693 

Gold GARCH 

(1, 1) 

GJR-

GARCH 

(1,1) 

EGARCH 

(1, 1) 

0.0004

68 

0.0004

59 

0.0003

95 

0 

0 

-

0.3008*

* 

0.021306 

0.012131 

-0.017036 

0.973694*

** 

0.977937*

** 

0.966609*

** 

0.995 

0.9900

68 

0.9495

73 

- 

0.296711*

** 

0.250228*

** 

998.68

12 

998.87

52 

998.99

16 

-

6.1088 

-

6.1038 

-

6.1046 

Crude 

Oil 

GARCH 

(1, 1) 

GJR-

GARCH 

(1,1) 

EGARCH 

(1, 1) 

0.0025

34 

0.0016

41 

0.0016

99 

0.00003

7 

0.00003

3 

-

0.2203*

* 

0.21892**

* 

0.000142 

-

0.177449*

* 

0.762427*

** 

0.815486*

** 

0.970494*

**  

0.9813

47 

0.8156

28 

0.7930

45 

- 

0.296711*

** 

0.250228*

** 

705.12

72 

711.42

22 

710.15

45 

-

4.3023 

-

4.3349 

-

4.3271 

Sugar GARCH 

(1, 1) 

GJR-

GARCH 

(1,1) 

EGARCH 

(1, 1) 

0.0011

86 

0.0010

87 

0.0012

29 

0.00010

8 

0.00000

8** 

-

1.74525

4 

0.117035 

0.000002 

0.040641 

0.603234* 

0.969072*

** 

0.778879* 

0.7202

69 

0.9690

74 

0.8195

2 

- 

0.018919 

0.207247 

818.78

32 

815.98

88 

818.27

76 

-

5.0017 

-

4.9784 

-

4.9925 

Note: *** refers to the 1% Significance level, **refers to the 5% Significance level, and *refers to the 10% 

Significance level. 
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The objective of the study is to investigate the impact of the COVID-19 pandemic on financial market volatility 

and analyse volatility dynamics using appropriate econometric models. The results obtained from Tables 1 and 2 

offer valuable insights into the behaviour of various financial assets during and before the pandemic period. 

EGARCH (1, 1) model parameters, it is evident that each financial market representative exhibits a long-term 

memory effect and an asymmetric effect at different significance levels. This finding suggests that the volatility 

of financial markets tends to persist over time, indicating a degree of predictability in market movements. 

Additionally, the observed asymmetric behaviour, particularly during the COVID-19 pandemic, highlights the 

sensitivity of financial markets to adverse shocks and the presence of heightened volatility during times of crisis. 

Statistical significance plays a crucial role in interpreting the coefficients estimated in the econometric models. 

In both Table 1 and Table 2, significance levels (***, **, *) are provided to indicate the statistical significance of 

the coefficients at different thresholds. For instance, a coefficient marked with *** indicates significance at the 

1% level, implying a high degree of confidence in the estimated relationship. Conversely, a coefficient marked 

with * suggests significance at the 10% level, indicating a lower degree of confidence. Analysing the significance 

levels of each coefficient allows researchers to discern the robustness of the estimated relationships and make 

informed interpretations about the underlying dynamics of the financial markets. In the context of the study’s 

objectives, significant coefficients provide evidence of the impact of the COVID-19 pandemic on financial market 

volatility and offer insights into the mechanisms driving market dynamics during times of crisis. Now, let us delve 

into the specific findings highlighted in the interpretation provided. The mention of BTC exhibiting the highest 

volatility persistence (β = 0.98) during the pandemic period underscores the heightened uncertainty and turbulence 

experienced in the cryptocurrency market during the COVID-19 crisis. This finding suggests that BTC prices 

were particularly sensitive to market shocks and exhibited a strong tendency to persist in their movements during 

this period. 

Similarly, the observation of crude oil demonstrating significant volatility persistence (β = 0.97) during the 

pandemic highlights the impact of external factors such as geopolitical tensions and changes in global demand on 

oil prices. The persistence of volatility in the crude oil market underscores the challenges faced by oil producers 

and consumers alike in navigating uncertain market conditions during the pandemic. Furthermore, the 

identification of a leverage effect in the gold commodity market before the COVID-19 pandemic, with a leverage 

coefficient of 0.41, suggests that gold prices were sensitive to changes in market sentiment and exhibited 

asymmetric behaviour in response to positive and negative shocks. This asymmetry in gold prices underscores 

the role of gold as a safe-haven asset during times of economic uncertainty, with investors flocking to gold as a 

store of value in turbulent times. Moreover, the comparison of volatility persistence in the gold commodity market 

before and during the COVID-19 pandemic reveals a notable increase in volatility persistence (β = 0.96) during 

the pandemic period compared with that before the pandemic (β = 0.59). This finding suggests that the COVID-

19 pandemic had a significant impact on the gold market, with increased volatility reflecting heightened 

uncertainty and risk aversion among investors. 
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Table 5: Show the results based on the GARCH models for the whole period (November 2018 to June 2023)  

 

Asset Class Model µ ω α(ARCH) β 

(GARCH

) 

α+β γ 

(Gamma)

, 

Log 

Likelih

ood 

AIC 

BTC GARCH (1, 1) 

GJR-GARCH 

(1,1) 

EGARCH (1, 

1) 

0.003

3 

0.003

312 

0.002

644 

 

0.000046 

0.00004 

-

0.107781

* 

0.098295*

** 

0.108002*

** 

0.029598*

** 

 

0.900705*

** 

0.907544*

** 

0.98199**

* 

0.999 

1.015

546 

1.011

588 

- 

-0.031982 

0.237742*

** 

1193.3

05 

1193.5

76 

1198.7

72 

-

3.6532 

-3.651 

-3.667 

EUR/USD GARCH (1, 1) 

GJR-GARCH 

(1,1) 

EGARCH (1, 

1) 

0.000

057 

0.000

099 

0.000

101 

0.000001 

0 

0.430652

** 

0.070414 

0.082489 

0.043688 

0.886033*

** 

0.919543*

** 

0.961453*

** 

0.956

447 

1.002

032 

1.005

141 

    - 

-0.056764 

0.134607*

** 

2706.7

61 

2707.9

87 

2708.0

79 

-8.31 

-

8.3107 

-8.311 

S&P 500 GARCH (1, 1) 

GJR-

GARCH(1,1) 

EGARCH (1, 

1) 

0.001

122 

0.000

776 

0.000

617 

0.000004 

0.000005 

0.365606

*** 

0.224243*

* 

0.056481 

-

0.168038*

* 

0.755825*

** 

0.774716*

** 

0.960603*

** 

0.980

068 

0.831

197 

0.792

565 

        - 

0.284695*

** 

0.266212*

** 

  

2100.4

7 

  

2109.2

79 

  

2108.9

35 

-

6.4445 

-

6.4685 

-

6.4675 

Gold GARCH (1, 1) 

GJR-GARCH 

(1,1) 

EGARCH (1, 

1) 

0.000

799 

0.000

793 

0.000

705 

0.000003 

0.000003 

0.16336*

* 

0.076819 

0.071891 

0.009072 

0.92117**

* 

0.921787*

** 

0.98167**

* 

0.997

989 

0.993

678 

0.990

742 

- 

0.00818 

0.172849 

2139.4

54 

2139.4

69 

2139.1

52 

-

6.5645 

-

6.5614 

-

6.5605 

Crude Oil GARCH (1, 1) 

GJR-

GARCH(1,1) 

EGARCH (1, 

1) 

0.001

229 

0.000

472 

0.000

539 

0.000041

** 

0.000034

** 

0.234677

* 

0.163904 

0.002758 

-

0.145662*

* 

0.796179*

** 

0.839875*

** 

0.968419*

** 

0.960

083 

0.842

633 

0.822

757 

- 

0.220441*

** 

0.200642 

*** 

1492.5

81 

1502.6

61 

1500.5

9 

-

4.5741 

-4.602 

-

4.5957 

Sugar GARCH (1, 1) 

GJR-GARCH 

(1,1) 

EGARCH (1, 

1) 

0.000

72 

0.000

59 

0.000

592 

0.000043

* 

0.000007

** 

-

0.772434 

0.121029*

* 

0 

-0.0231 

0.745903*

** 

0.955467*

** 

0.904781*

** 

0.866

932 

0.955

467 

0.881

681 

-

0.050876*

** 

0.224624*

** 

1721.4

99 

1720.4

85 

1722.7

28 

 

-

5.2785 

-

5.2723 

-

5.2792 

Note: *** refers to the 1% Significance level, **refers to the 5% Significance level, and *refers to the 10% 

Significance level. 
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Moreover, Table 4 refers to the empirical results of the different GARCH family models during the COVID-19 

pandemic. Our basic emphasis is on the selection of the best-fit GARCH model that determines the volatilities of 

the representatives of the six financial markets under observation. Based on the numerical results provided by the 

AIC, GARCH (1, 1) is regarded as the best model for describing the volatilities of Gold and Sugar; meanwhile, 

GJR-GARCH (1, 1) is the most suitable model in terms of modelling the volatilities of crude oil and S&P 500; 

the volatilities of BTC and EUR are best modelled by E-GARCH (1, 1). Concerning the E-GARCH (1, 1) results, 

both the BTC and EUR returns series show high persistence behaviour due to the fact that the sum of the ARCH 

and GARCH parameters are either greater than 1 or close to it (1.024373, 0.910099). This high persistence is 

probably the result of the COVID-19 pandemic. In addition, both of them also show significant asymmetric effects 

(gamma) at the 1%, 5%, and 10% significance levels because of the drastic economic impacts. In contrast, the 

returns volatilities of S&P 500 and Crude Oil based on the GJR-GARCH (1, 1) model also show persistent 

behaviour but are lower than that of BTC and EUR; moreover, S&P 500 shows a significant asymmetric effect at 

the 5% and 10% significance levels and Crude Oil exhibits a significant asymmetric effect at the 1%, 5%, and 

10% significance levels. In contrast, the Gold and Sugar returns series exhibit persistent behaviour along with the 

symmetric effect; however, gold shows more persistent behaviour (α + β = 0.955) when compared to Sugar (α + 

β = 0.720269); the reason might be that COVID-19 had a negligible effect on Gold and Sugar. On the other hand, 

Metal has been considered a safe haven financial instrument during various forms of financial crises (Bouri et al. 

2020; Jareño et al. 2020; Selmi et al. 2018). Studies confirm that the price of gold increased during the global 

financial crisis, whereas the prices of other financial assets declined drastically (Beckmann et al. 2015). 

Furthermore, Conlon and McGee (2020) found that Bitcoin did not act as a safe-haven instrument during the 

COVID-19 outbreak. Klein et al. (2018) also reported that Bitcoin returns have an asymmetric response to market 

shocks. 

Table 5 illustrates the application of GARCH (1, 1), GJR-GARCH (1, 1), and E-GARCH (1, 1) on the 

representatives of the six financial markets for the entire period. According to the AIC values, concerning the 

returns series of the Gold commodity, GARCH (1, 1) is the best-suited model for capturing the volatility. The 

results suggest that the Gold returns series possess symmetric phenomena and high persistent behaviour (α + β = 

0.997989). 

However, for most of the asset returns, including BTC, EUR, and Sugar, the E-GARCH (1, 1) model is the most 

suitable model in terms of determining their volatilities. Moreover, among them, BTC and EUR exhibited the 

strongest persistence, whereas all three showed a significant asymmetric effect at the 1%, 5%, and 10% 

significance levels. In addition, GJR-GARCH (1, 1) was selected as the best model to capture the volatilities of 

the Crude Oil and S&P 500 index returns. Additionally, a significant asymmetric effect was present in the return’s 

series of the Crude Oil and S&P 500 index returns at a significance level of 1%, 5%, and 10%. Meanwhile, high 

persistent behaviour was shown by the S&P 500 returns and the Crude Oil returns. 

Overall, after analysing the results for the three different periods, it can be concluded that a single model is not 

sufficient to model the volatilities of the selected financial assets. Each model provides different estimations for 

the different periods, i.e., E-GARCH (1, 1) provides a better fit for the assets under observation before the 

COVID-19 pandemic. 

The model fitness changes during the COVID-19 pandemic, that is volatilities of Gold, and Sugar are modelled 

by GARCH (1, 1) showing persistent behaviour, S&P 500, and Crude Oil are modelled by GJR-GARCH (1, 1) 

exhibiting significant leverage effect and persistence phenomena. Moreover, E-GARCH (1, 1) captures the 

leverage effect and persistent behaviour of BTC and EUR. In contrast, different results are shown for the whole 
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period, where only the returns series of the Gold commodity was modelled by GARCH (1, 1), showing high 

persistence with no leverage effects, whereas the BTC, EUR, and Sugar volatilities are described by E-GARCH 

(1, 1), exhibiting significant leverage effects and persistence effects; furthermore, the S&P 500 and Crude Oil 

returns volatilities are captured by GJR-GARCH (1, 1), addressing persistence behaviour and leverage 

phenomena. 

18. Discussion of the Findings 

The COVID-19 pandemic had a catastrophic influence on the financial markets (Ali et al. 2020; Aslam et al. 

2020a; Haroon and Rizvi 2020; Sansa 2020), and the volatility behaviour of the financial returns was shaken by 

this crisis. In this study, we investigated the market volatility of six financial markets during the COVID-19 

pandemic by adopting three GARCH family models [GARCH (1, 1), GJR-GARCH (1, 1), and EGARCH (1, 1)]. 

The findings of the study indicate that the exponential GARCH model is appropriate for BTC and EUR, while 

GJR-GARCH (1, 1) is appropriate for S&P 500 and Crude Oil. These findings are supported by Iqbal et al. (2021), 

who reported that, for modelling volatilities, the EGARCH model outperforms the traditional GARCH model. 

The volatility persistence of all financial markets was high during the COVID-19 pandemic. The findings of this 

study also confirm the insignificant asymmetric effect in the volatility of the Gold returns during the pandemic. 

However, Crude Oil had a significant positive asymmetric effect during this pandemic. Moreover, Shehzad et al. 

(2021) also reported that crises like COVID-19 have abruptly affected both the stock and oil markets. 

Furthermore, the increase in the volatility of the financial markets generated a fear of losing money among 

investors due to the COVID-19 pandemic (Chen et al. 2020). 

This study makes a significant contribution to the existing literature; this is the first attempt to highlight the 

volatility behaviour of all the major financial assets from the six major financial markets during the COVID-19 

pandemic. A very significant question arises: were all the financial markets affected by the tragic pandemic? 

Despite the new phase of COVID-19 cases and the extensive fluctuation in the financial markets across the world, 

the markets indicate a recovery pattern. Given the uncertainty, it is very challenging to predict the long-term 

financial impact of COVID-19. The cryptomarket experienced a massive crash during the COVID-19 pandemic. 

The findings also revealed potential evidence of a volatility trend over the period and a high level of volatility 

persistence for Bitcoin. During the COVID-19 pandemic, a significant increase was reported in the volatility of 

Bitcoin. 

This can be explained by the irrational behaviour of investors, which leads to speculation in the financial market. 

In a speculative bubble situation, the news of prices can affect irrational investors’ decisions, which leads to 

catastrophic results in the market like a virus. 

19. Summary  

The COVID-19 pandemic has left an indelible mark on the global financial landscape, its influence reverberating 

through markets worldwide. Studies such as those by Ali et al. (2020), Aslam et al. (2020a), Haroon and Rizvi 

(2020), and Sansa (2020) have underscored the profound impact of the crisis on financial markets, with volatility 

becoming a defining characteristic of financial returns during this period. In response, researchers have delved 

into understanding market volatility during the pandemic, employing sophisticated modelling techniques like the 

GARCH family models. 

The investigation into market volatility during the COVID-19 pandemic revealed nuanced patterns across various 

financial markets. Notably, the exponential GARCH model emerged as fitting for assets like Bitcoin (BTC) and 

the Euro (EUR), while the GJR-GARCH (1, 1) model proved suitable for the S&P 500 and Crude Oil. These 

findings, consistent with the research by Iqbal et al. (2021), shed light on the efficacy of different models in 
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capturing volatility dynamics during crises. Furthermore, the study highlighted the persistence of volatility across 

all markets, underscoring the pervasive uncertainty engendered by the pandemic. 

Despite the severity of the pandemic’s impact, not all markets responded uniformly. While insignificant 

asymmetric effects were observed in Gold returns, Crude Oil exhibited a significant positive asymmetric effect 

during the crisis, echoing the findings of Shehzad et al. (2021). The abrupt disruptions in the stock and oil markets 

emphasised the destabilising influence of crises like COVID-19, worsening investor fears of financial loss (Chen 

et al., 2020). 

This study marks a significant contribution to the financial literature, offering a comprehensive analysis of 

volatility across major financial assets and markets during the COVID-19 pandemic. The findings raise pertinent 

questions about the pandemic’s differential impact on financial markets and underscore the challenges of 

predicting its long-term consequences. The cryptocurrency market, in particular, witnessed substantial upheaval, 

with Bitcoin experiencing pronounced volatility trends and persistence during the crisis. 

The surge in Bitcoin volatility can be attributed in part to irrational investor behaviour, fueling speculation and 

worsening market instability. Such speculative bubbles can be likened to viruses, infecting market sentiment and 

precipitating tumultuous outcomes. As markets navigate the aftermath of the pandemic, understanding these 

dynamics will be crucial for informing resilient financial strategies and mitigating future crises. 

20. Conclusion  

Volatility emerged as a hallmark of financial returns during this period, prompting researchers to employ 

sophisticated modelling techniques like the GARCH family models to unravel the intricacies of market dynamics. 

Through meticulous investigation, nuanced patterns in market volatility across various financial assets were 

unveiled, with models such as the exponential GARCH and GJR-GARCH shedding light on their efficacy in 

capturing volatility dynamics amid crises. 

Despite the heterogeneous responses of financial markets to the pandemic, the pervasive uncertainty it engendered 

remained a common thread. While certain assets exhibited insignificant asymmetric effects, others, like Crude 

Oil, experienced significant positive asymmetric effects, magnifying investor apprehensions about financial loss. 

The disruptions witnessed in the stock and oil markets underscored the destabilising influence of crises like 

COVID-19, further emphasising the importance of understanding and mitigating their impact on financial 

stability. 

This study represents a significant contribution to the financial literature by providing a comprehensive analysis 

of market volatility across major financial assets during the COVID-19 pandemic. The findings underscore the 

challenges inherent in predicting the long-term consequences of such crises and emphasise the need for resilient 

financial strategies to navigate future uncertainties. As markets continue to grapple with the aftermath of the 

pandemic, a nuanced understanding of volatility dynamics will be essential for fostering stability and resilience 

despite future crises. 
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