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 This article explores the dynamic behavior of elastic thin plates with 

viscoelastic boundary conditions, extending previous research on wave 

and heat equations applied to such structures. The study focuses on a 

bounded domain Ω ⊂ ℝ2 with a 𝐶2-smooth boundary Γ, where the 

plate is clamped and exhibits memory effects on a relatively open 

subset Γ0 ≠ ∅ with positive boundary measure. The vertical deflection 

(𝑥, 𝑡) of the thin elastic plate is governed by a partial differential 

equation, accounting for memory effects and clamped conditions. 

The partial differential equation governing the vertical deflection is 

expressed as 𝑦𝑡(𝑥, 𝑡) + Δ2𝑦(𝑥, 𝑡) = 0 in Ω × ℝ+, subject to specific 

boundary conditions on Γ0 and Γ1. These conditions encompass both 

clamped constraints and memory effects, introducing integral terms 

that consider the history of the vertical deflection. The relaxation 

function and boundary control further contribute to the complexity of 

the model. 

Throughout the investigation, the relaxation function (⋅) adheres to 

specific conditions, ensuring a well-defined memory behavior. These 

conditions include strict monotonicity, decreasing rate of memory loss, 

and exponential decay of the memory function. The memory function's 

behavior is crucial in capturing the viscoelastic properties of the 

material. 

The article aims to provide a comprehensive understanding of the 

dynamic response of elastic thin plates with viscoelastic boundary 

conditions. By incorporating memory effects and clamped constraints, 

the study contributes valuable insights into the intricate interplay 

between material properties and structural behavior. The proposed 

model and its analysis pave the way for advancements in the 

understanding and design of viscoelastic structures. 
 

 

 

1 Introduction  

 The problems of elastic structures with viscoelastic boundary conditions have been studied extensively by many 

articles (see References [1]-[5]). Motivated by the work on wave and heat equations mentioned above, in this 
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article we are concerned with an elastic thin plate which occupies a bounded domain Ω ⊂ ℝ2 with 𝐶2-smooth 

boundary Γ. Assume that , where Γ  and Γ  are relatively open subsets of Γ Γ0 ≠ ∅ has positive 

boundary measure, and  is clamped and the memory effect on Γ  is taken into account, the 

vertical deflection 𝑦(𝑥, 𝑡) of the thin elastic plate satisfies the following partial differential equation:   

𝑦(𝑥, 𝑡) + Δ2𝑦(𝑥, 𝑡) = 0,    in    Ω × ℝ+,    (1.1a)  

(𝑥, 𝑡) = ∂𝑣(𝑥, 𝑡) = 0,    on    Γ0 × ℝ+,    (1.1b)  

ℬ1(𝑥, 𝑡) − ∫0
∞ 𝑔′(𝑠) ∂𝑣[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 0,    on    Γ0 × ℝ+,  (1.1c)  

ℬ2(𝑥, 𝑡) + ∫0
∞ 𝑔′(𝑠)[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 𝑢(𝑥, 𝑡),    on    Γ1 × ℝ+,  (1.1d)  

(𝑥, 0+) = 𝑦0(𝑥),    𝑦𝑡(𝑥, 0+) = 𝑦1(𝑥),    (1.1e)  

(𝑥, −𝑠) = (𝑥, 𝑡),    𝑓𝑜𝑟    0 < 𝑠 < ∞,    (1.1f)  

where  is the relaxation function,  is the boundary control, 𝑦0, 𝑦1, 𝜗 are the given initial conditions. ℬ1,ℬ2 are 

the following boundary operators:   

  

𝑣 = (𝑣1,2) is the unit outer normal vector, 𝜏 = (−𝑣2, 𝑣1) is the unit tangent vector, and  is the Poisson ratio.   

Throughout the article, we assume always that the function (⋅) satisfies the following conditions:  

,∞);  

  𝑔 ′𝑡 < 0,    𝑔′ ′   

∞   
′′′ 𝑡forsome 𝑘 >   

Condition (𝑔2) implies that the memory of the boundary is strictly decreasing and the rate of memory loss is also 

decreasing. From (𝑔2), we have also that both (∞  and ′ ∞  exist, 𝑔′(∞) ≥ 0. Condition (𝑔3) means that the 

material behaves like an elastic solid at 𝑡 = ∞. Condition (𝑔4) implies that 𝑔′(𝑡) decays exponentially, in particular, 

𝑔′(∞) = 0.   

The energy corresponding to the system (1) is defined by   

           (1.2)                     

where 𝑎(𝑤) = 𝑎(𝑤, 𝑤) and   

  

          (1.3)  

2. Well-Posedness of the System with Feedback Control  

In this section, we shall formulate the system (1.1a-1.1f) into a standard linear infinite dimensional space with  

a output feedback control. Let   
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𝑊 = {𝑤 ∈ 𝐻2(Ω)|𝑤|Γ0 = ∂𝑣𝑤|Γ0 = 0},   ∥ 𝑤 ∥2
𝑊= 𝑎(𝑤),    ∀𝑤 ∈ 𝑊,  

and define the "boundary memory space" by       

∞; |𝑔′( Γ1)),  

∞  

∥ 𝑧 ∥2𝑍= ′2𝐿2 Γ1 ∥2𝐿2 Γ.  

0 

Set   

ℋ = 𝑊 × 𝐿2(Ω) × 𝑍  

equipped with the inner product induced norm   

.  

It is easy to see that  is a Hilbert space.  

 

 
Remark We have that (⋅)2 is an equivalent norm on  since Γ0 ≠ ∅ has positive boundary measure.  

Moreover, it is obvious that  is an equivalent norm on 𝐻1(Γ1) . In fact, if  

∂𝑣𝑧 ∥2
𝐿2(Γ1) +∥ 𝑧2 ∥2

𝐿2(Γ1)= 0, then 𝑧 = ∂𝑣𝑧 = 0 on Γ . It follows that ∇𝑧= 𝑣 ∂𝑣𝑧 = 0 on Γ . Therefore, 𝑧 = 0 in 

𝐻1(Γ1).   

Next we introduce some operators (Ref.9) as follows:  

(i) We set   

∞ 

(𝑠) =𝑔′(𝑠)𝑧(𝑠)d𝑠, 

 𝒜0 = Δ   (𝒜0) = {𝑤 ∈ 𝐻4(Ω) ∩ 𝑊|ℬ1𝑤|Γ1 = ℬ2𝑤|Γ1 = 0}. 

It is easy to know that 𝒜0 is a positive self-adjoint operator on 𝐿2(Ω .   

(ii) The Green operators 𝑁1 and 𝑁2 are introduced to describe the boundary conditions,   

Δ2� = 0, in      Ω, 

= ∂ 𝑣� = 0, on    Γ0,  

1� = 𝑔, on    Γ1, 

2� = 0, on    Γ1, 

Δ2� = 0, in      Ω, 
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= ∂ 𝑣� = 0, on    Γ0,  

1� = 0, on    Γ1, 

  2� = 𝑔, on    Γ1. 

In terms of the regularity theory for the elliptic equations (Ref.6), we see that   

 . 

By these operators defined above, we may rewrite the system (1.1a-1.1f) as   

 𝑦(⋅,𝑡) + 𝒜0[𝑦(⋅, 𝑡) − 𝑁1𝐿𝑧(⋅, 𝑡, 𝑠) + 𝑁2𝐿𝑧(⋅, 𝑡, 𝑠) − 𝑁2𝑢(⋅, 𝑡, 𝑠)] = 0,(2.1)  

Where (⋅, 𝑡, 𝑠) = (𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠), 𝑥 ∈ Γ  . Considering 𝐿2(Ω  as the pivot space: [𝒟(𝒜0)] ⊂ 𝐿2(Ω) ⊂ 

[(𝒜0)]′ and extending the 𝒜0 to be 𝒜 0: 𝐿2(Ω) → [𝒟(𝒜0)]′, we can rewrite (4) as   

𝑦𝑡𝑡 (⋅,) = −𝒜 0(⋅, 𝑡) + 𝒜 0𝑁1𝐿𝑧(⋅, 𝑡) − 𝒜 0𝑁2𝐿𝑧(⋅, 𝑡) + 𝒜 0𝑁2𝑢(⋅, 𝑡) ∈ [𝒟(𝒜0)]′. (2.2) Thus we can write the system 

(1.1a-1.1f) as a standard form of linear infinite-dimensional system in   𝑌 (𝑡) = (𝑡) + 𝐵𝑢 (2.3)  

  Where   
    

  And      

Finally, a direct computation gives   

  

For all 𝑓 ∈ (𝒜0) and 𝑔 ∈ 𝐿2(Γ1). Therefore, 𝑁2
∗(𝒜 0)𝑓 = 𝑁2

∗𝒜0𝑓 = −𝑓|Γ1, 𝑓 ∈ 𝒟(𝒜0). It follows that   

    

Now, let us consider a feedback control so that the input and output are collocated (Ref.7):   

  𝑢 = −𝑘𝐵∗(𝑦, 𝑦𝑡,𝑧)𝑇 = 𝑘𝑦𝑡|Γ1,    𝑘 ≥ 0. (2.5)  

The closed-loop system under this output feedback then becomes   

𝑦(𝑥, 𝑡) + Δ2𝑦(𝑥, 𝑡) = 0,    in    Ω × ℝ+,    (2.6a)  

(𝑥, 𝑡) = ∂𝑣(𝑥, 𝑡) = 0,    on    Γ0 × ℝ+     (2.6b)  

ℬ1(𝑥, 𝑡) − ∫0
∞ 𝑔′(𝑠) ∂𝑣[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 0,    on    Γ0 × ℝ+, (2.6c)  

ℬ2(𝑥, 𝑡) + ∫0
∞ 𝑔′(𝑠)[𝑦(𝑥, 𝑡) − 𝑦(𝑥, 𝑡 − 𝑠)]d𝑠 = 𝑘𝑦𝑡(𝑥, 𝑡),    on    Γ1 ×

+,  (2.6d)  
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(𝑥, 0+) = 𝑦0(𝑥),    𝑦𝑡(𝑥, 0+) = 𝑦1(𝑥),   (2.6e)  

𝑦(𝑥, −𝑠) = 𝜗(𝑥, 𝑡).    for    0 < 𝑠 < ∞,   (2.6f)  

The initial boundary problem (2.6) can be written as an evolutionary equation in :   

   

Where 𝑌 = (𝑦, 𝑦𝑡,), 𝑌0 = (𝑦0, 𝑦1, 𝑦0 − 𝜗) and      

With the domain   

Δ2𝑤 ∈ 𝐿2(Ω),𝑣 ∈ 𝑊∞ , 𝑧(⋅) ∈ 𝐻1(0,∞; |𝑔′(⋅)|; 𝐻1(Γ1)),  

(0) = 0, [ℬ1𝑤 − 𝑔′(𝑠) ∂𝑣𝑧(𝑠)d𝑠]Γ1 = 0,   

0  

∞ 

ℬ 2𝑤 + 𝑔′(𝑠)𝑧(𝑠)d𝑠]Γ1 = 𝑘𝑣|Γ1, 

  0 

Where   

.  

The following theorem ensures that the system (2.6) is well-posed in .  

Theorem 2.1. Assume that the function  satisfies (𝑔1) through (𝑔3) and 𝑘 ≥ 0. Then the operator   

generates a 𝐶𝑜-semigroup 𝑆(𝑡) of contraction on .  

Proof. We first prove that ℛ(𝐼 − 𝒜) = ℋ. Namely, we need to show that the following system of the equations   

  𝑤 − 𝑣 = 𝑓,  (2.7a)  

  𝑣 + Δ2𝑤 = 𝑔, (2.7b)  

    (2.7c)  

has a solution (𝑢, 𝑣, 𝑧) ∈ 𝒟(𝒜) for every (𝑓, 𝑔, �) ∈ ℋ. In fact, it follows from (2.6) that   

  𝑣 = 𝑤 −  ∈ 𝑊,  (2.8a)  

  𝑤 + Δ2𝑤 = 𝑓 + 𝑔 ∈ 𝐿2(Ω),  (2.8b)  

  (𝑠) = (1 − 𝑒−𝑠) + (1 − 𝑒−𝑠)𝑓 + ∫0
∞ 𝑒𝜏−𝑠�(𝜏)d𝜏 ∈ 𝑍.  (2.8c)  

Therefore, Furthermore, by (11b)-(11c) we have 

that for any  

𝑤 ∈ 𝑊 satisfying Δ2𝑤 ∈ 𝐿2(Ω  and ℬ1𝑤 − ∫0 𝑔′(𝑠) ∂𝑣𝑧(𝑠)d𝑠 = 0,ℬ2𝑤 + ∫0 𝑔′(𝑠)𝑧(𝑠)d𝑠 = 𝑘𝑣, it has for all 𝜙 ∈ 𝑊,   

  (2.9)  
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Where   

  

And   

.  

We see from the Lax-Milgram theorem (Ref.8) that the equation (2.9) admits a unique solution 𝑤 ∈ 𝑊. Combining 

this with (2.8𝑎) and (2.8c), we see that (𝑤, 𝑣, 𝑧) ∈ (𝒜) solves the equation (𝐼 − 𝒜)(𝑤, 𝑣, 𝑧) = 

(𝑓, 𝑔, �).   

Next, for any 𝑌 = (𝑤, 𝑣, 𝑧) ∈ (𝒜), it has   

ℛ (𝒜𝑌 𝑌) 

  (2.10) . 

Hence  is dissipative. We see from the theorem 1.4.6 of Ref.8 that (𝒜) is dense in . Therefore, we can 

conclude by Lumer-Phillips theorem that  generates a 𝐶𝑜-semigroup of contractions on . The proof of 

Theorem  

2.1 is complete now.   □  

3 A Variable Structural Control for the System  

Let us establish a sliding model control for the system (??)   

   

 where  is a bounded linear operator from  to , 𝑤(𝑌, 𝑡) is the control of the system (3.1) that is not  

continuous on the manifold 𝑆 = 𝐶𝑌 = 0, and  is a bounded linear operator with 𝑆 = 𝑆(𝑌) = 𝐶𝑌 ∈ 𝑅𝑛.  

Now, we consider the -neighborhood of sliding mode 𝑆 = 𝐶𝑌 = 0, where 𝛿 > 0 is an arbitrary given positive  

number. Using a continuous control 𝑤 (𝑧, 𝑡) to replace (𝑧, 𝑡) in the system 3.1 yields   

   

where𝑌 = ∂𝑌/ ∂𝑡, and the solution of (3.2) belongs to the boundary layer ∥ (𝑌) ∥≤ 𝛿  

Let 𝑆 (𝑌) = 𝐶𝑌 = 0. Applying  to the first equation of (3.1) leads to the following the equivalent control:   

 𝑤(𝑌, 𝑡) = −(𝐶𝐵)−1𝐶(𝒜𝑌)  

With assumption that (𝐶𝐵)−1 exists. Substitute 𝑤(𝑌, 𝑡) into 3.1 to find   

 𝑌 = [𝐼 − (𝐶𝐵)−1𝐶]𝒜𝑌.  (3.3)  

Denote 𝑃 = (𝐶𝐵)−1𝐶 and 𝒜0 = (𝐼 − 𝑃)𝒜, then 3.1 becomes   

 𝑌 𝒜 𝑌 (0) 𝑌 (3.4)  

In the rest part of this paper, we are going to show that the actual sliding mode (𝑌) will approach uniformly  

 
to the ideal sliding mode 𝑍(𝑌) under certain conditions.  

Lemma 3.1 If (𝐶𝐵)−1 is a compact operator and 𝑃𝒜 = 𝒜𝑃 , then 𝒜0 = (𝐼 − 𝑃)𝒜 generates a 𝐶0 - 

semigroup 𝑇2(𝑡) in  and 𝑇2(𝑡) = (𝐼 − 𝑝)𝑇1(𝑡), where 𝑇1(𝑡) is the 𝐶0-semigroup generated by .  

Proof. Since (𝐶𝐵)−1 is a compact operator,  and  are bounded linear operators, we see from the definition of  

that  is compact, and therefor the range of 𝐼 − 𝑃 is a closed subspace of . Since 𝑃2 = 𝑃 and (1 − 𝑃)2 = 𝐼 − 𝑃, 𝐼 
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− 𝑃 can be viewed as the identity operator on (𝐼 − 𝑃)ℋ. It can be easily seen that 𝑇2(𝑡) = (𝐼 − 𝑃)𝑇1(𝑡) is a 𝐶0-

semigroup in (𝐼 − 𝑃)ℋ.  

Next, we shall prove that the infinitesimal generator of 𝑇2(𝑡) is (𝐼 − 𝑃)𝒜 and 𝒟((𝐼 − 𝑃)𝒜) = (𝐼 − 𝑃)𝒟(𝒜). In fact, 

for every 𝑥 ∈ (𝐼 − 𝑃)(𝒜), there is a 𝑥1 ∈ 𝒟(𝒜) such that 𝑥 = (𝐼 − 𝑃)𝑥1. It should be noted that 𝑇1(𝑡) and 𝐼 − 𝑃 are 

commutative because 𝒜 and 𝑃 are commutative. We see that      

Let   be the infinitesimal generator of 𝑇2(𝑡). Since the limit on the left exists, we can assert that 𝑥 ∈ ( ) and (𝐼 − 

𝑃)𝒟(𝒜) ⊆ 𝒟(𝒜 ).  

  

On the other hand, for any 𝑥 ∈ ( ), since 𝒟(𝒜 ) ⊆ (𝐼 − 𝑃)ℋ, there exists 𝑥 ∈ ℋ, such that 𝑥 = (𝐼 − 𝑃)𝑥 , and   

𝑇   (𝑡) 𝑇 (𝑡)(𝐼 𝑃)( ) (𝐼 𝑃)( ) 

Since the limit of the left hand side exists, and so the limit of the right hand side exists, and 𝑥 ∈ (𝒜) which 

implies that (𝒜 ) ⊆ (𝐼 − 𝑃)𝒟(𝒜). Thus, ( ) = (𝐼 − 𝑃)𝒟(𝒜)and , the infinitesimal generator of 𝑇2(𝑡), is (𝐼 − 𝑃)𝒜.  

The proof of the lemma is complete.  

Theorem 3.2 Suppose that in the system 3.1,  

1. (𝐶𝐵)−1 exists and it is compact,  2. 𝑃𝒜 = 𝒜𝑃, where 𝑃 = (𝐶𝐵)−1𝐶.   

Then for any solution (𝑡) of the system 3.4 satisfying , we 

have   
  

Uniformly on [0, 𝑇] for any positive number .  

Proof. We see from the Theorem 2.1 and Lemma 3.1 that  and 𝒜0 = (𝐼 − 𝑃) are infinitesimal generators of 𝐶0-

semigroups 𝑇1(𝑡) and 𝑇2(𝑡) respectively. It follows from theory of semi group of linear operators that there are 

positive constants 𝑀1,2,𝜔1 and 𝜔2 such that   

    (3.5)  

In the boundary layer ∥ 𝑇1(𝑡) ∥≤ 𝛿, the equivalent control is   

  𝑤(𝑌, 𝑡) = −(𝐶𝐵)−1𝐶𝒜𝑌 + (𝐶𝐵)−1𝐶𝑌   (3.6)  

Substitute (3.6) into (3.1) to find   

  𝑌 = (𝐼 − 𝑃) + 𝑃𝑌  (3.7)  

Hence, the solution of (3.7) can be expressed as follows:   

  ,  (3.8)  



 International Journal of Engineering Science and Applied (IJESA) Vol. 15 (1) 

 

pg. 24 

And the solution of (3.4) can be written as   

    (3.9)  

Substracting (3.9) from (3.8) yields   

    

Since𝑃𝒜 = 𝒜𝑃, we see that 𝑃𝑇1(𝑡) = 𝑃𝑇1(𝑡). It should be emphasized that (𝐼 − 𝑃)= 0 and 𝑇2(𝑡) = (𝐼 − 

𝑃)1(𝑡), and consequently,   

𝑡   

 𝑇2 

0 

=  

0 = 0  

It can be obtained from (3.10) and (3.5) that   

 ,  

  

Since∥ 𝑌0 − 𝑌0 ∥≤ 𝛿, we have   

.  

Thus,   

The proof of the theorem is complete.  

We see from the Theorem 3.2 that the actual sliding mode can be approximated by ideal sliding mode in any 

accuracy.  
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