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 Small signal or dynamic instability is one of the major challenges 

experienced in the operation of power systems, which often results in 

the violation of acceptable voltage and frequency limits. Therefore, this 

study assessed small signal stability on a power system via an 

eigenvalues approach. Non-linear differential-algebraic equations 

describing the dynamic characteristics of the power system were 

developed. These equations were linearized using Taylor’s series 

expansion. The computational algorithm with eigenvalues was 

developed considering the Nigerian 330 kV electricity grid comprising 

13 generators and 36 busses as test system. The qualitative stability 

state of the system was determined by obtaining the eigenvalues of the 

generator rotor angle (𝛿)  parameters with and without control schemes 

implemented via the governor (G) and the governor with the power 

system stabilizer (G + PSS). The results showed that  𝛿 was in stable 

state for all 13 generators in the network with eigenvalues obtained 

having negative real parts with and without controllers; although a 

better system stability level was obtained with G + PSS compared to G 

because the real part of the obtained eigenvalues was much lower in 

value. This result clearly revealed that G + PSS exhibited superiority 

over G in improving the small signal stability of the considered power 

network. The use of eigenvalues produced a simplified analysis of the 

small signal stability of a power system network where the combined 

effect of the governor and power system stabilizer offered better 

stability enhancement. 
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1. INTRODUCTION 

One of the key elements responsible for the continuous running of an interconnected power system is the system 

generators. Generators, during normal operation, may encounter disturbances like sustained oscillations in speed 

or periodic torque variations. These disruptions can lead to voltage or frequency fluctuations, negatively 

impacting the operation of other interconnected power system components, which in most cases results in loss of 

synchronism (Afzal et al., 2021; Mohammed et al., 2015). Alongside these disturbances, other critical issues such 

as steady-state stability, transient stability, dynamic stability, harmonics, disturbances, voltage collapse, and 

reactive power loss require careful attention in power system management to ensure optimal performance. 

Neglecting these concerns may lead to persistent instability in system operations (Afzal et al., 2021; Mohammed 

et al., 2015). 

This work focuses on the assessment of dynamic stability because of its inherent importance for optimizing the 

performance of an interconnected power system. Dynamic stability is associated with a system operating normally 

without any major disturbance. It describes the characteristics of the system when subjected to small disturbances 

such as small changes in load, voltage, frequency, and rotor angle. Present-day interconnected power systems are 

typical examples of large-scale complex multivariate systems. They generally comprise several dynamic units, 

including synchronous generators and dynamic loads, such as synchronous and induction motors. The generated 

electrical energy is transmitted over an interconnecting network, which in turn supplies the required power to load 

centres. Much of the complexity in these systems arises from the fact that in the analysis of any one segment of 

the system, the whole interconnected system needs to be considered (Gomila et al., 2023; El Din, 1977), and the 

problems involved are always associated with the inclusion of damping of mechanical oscillations and the stability 

of the frequency control loop.  

The power system dynamic stability characteristics are of great significance to power system engineers and 

researchers. Dynamic stability characteristics of systems have been recognized as essential for secure and quality 

system operation (Yousif et al., 2022; Bayliss and Hardy, 2007). The problems and effects involved in power 

system dynamic studies have always been associated with the question of whether or not a system remains in 

synchronism after a credible disturbance (Shrestha et al., 2021; deMello, 1975). Dynamic problems in power 

systems have been classified under the major categories of electrical machine and system dynamics, system 

governing and generation controls, and prime-mover energy supply system dynamics and controls (Kawther et 

al., 2021; deMello, 1975). Usually, the second class of dynamics lasts for many minutes, whereas the third class 

of dynamics lasts for several seconds to a few minutes. Hence, for the analysis of system dynamics included in 

these two classes, the network and machine electrical transients can be neglected. The first class of dynamics is 

the most involved in stability studies performed by electrical utilities. It is related to machine and system 

dynamics; hence, the interaction between machines, excitation systems, turbine governors, and system loads 

should be considered. Usually, the simulated dynamics in this class result in relatively large equivalent systems. 

These, in turn, require efficient modeling and analysis techniques. Concurrent with these requirements is the need 

for a good understanding of the fundamentals and physics involved in system interactions. Hence, this work dealt 

with significance of this work: dynamic stability assessment and enhancement in the Nigerian 330 kV, 36-bus 

electricity grid network via the combined use of governor and power system stabilizer. 

2 Methodology  

The Nigerian 330 KV, 36-bus system was modeled as a case study of the power system for the simulation 

experiment. MATLAB codes were developed for modeling the interconnected power system with damping 

controllers and for programing the eigenvalue stability analyzer. Simulations were carried out to determine the 



International Journal of Engineering Sciences and Applied Mathematics (IJESAM) Vol. 15 (5) 

 

pg. 3 

effect on the rotor angle stability of the case study of the power system. The stability of the 36-bus case study 

interconnected power network is evaluated with a power system network with a governor and a governor + power 

system stabilizer (G +PSS) as damping controllers. 

3 Mathematical Model of Vector Matrixes for Eigenvalue Analysis  

Power system matrices are required for the stability analyses of the eigenvalue program; hence, the mathematical 

model was derived as shown: 

4 Classical Model of Synchronous Machines (Generator) 

Generator Represented by the Classical Model 

With the generator represented by the classic model and all resistances neglected, the system representation is 

shown in Figure 5. 

 
Figure 1: Classical Model of a Generator for an Infinite Bus (Kundur 2004) 

 

Here 𝐸′ is the voltage behind 𝑋𝑑
′ . Its magnitude is assumed to remain constant at the predisturbance value. Let 𝛿 

be the angle by which 𝐸′ leads the infinite bus voltage 𝐸𝐵. As the rotor oscillates during a disturbance, 𝛿 changes. 

With 𝐸′ as reference phasor,  

𝐼𝑡 =
𝐸′∠00−𝐸𝐵∠−𝛿

𝑗𝑋𝑇
=

𝐸′−𝐸𝐵(cos𝛿−𝑗 sin𝛿)∠−𝛿

𝑗𝑋𝑇
      Equation (1) 

The complex power behind 𝑋𝑑
′  is given by 

𝑆′ = 𝑃 + 𝑗𝑄′ = �̃�′𝐼𝑡
∗ =

𝐸′𝐸𝐵 sin𝛿

𝑗𝑋𝑇
+ 𝑗

𝐸′(𝐸′−𝐸𝐵cos𝛿)

𝑋𝑇
      Equation (2) 

With the stator resistance neglected, the air-gap power 𝑃𝑒 is equal to the terminal power 𝑃. In per unit, the air-gap 

torque is equal to the air-gap power. 

𝑇𝑒 = 𝑃 =
𝐸′𝐸𝐵

𝑋𝑇
sin 𝛿          Equation (3) 

Linearizing the initial operating condition represented by 𝛿 = 𝛿0 yields 

Δ𝑇𝑒 =
𝜕𝑇𝑒

𝜕𝛿
Δ𝛿 =

𝐸′𝐸𝐵

𝑋𝑇
Cos 𝛿0 Δ𝛿        Equation (4) 

The equations of motion per unit are 

𝑝Δ𝜔𝑟 =
1

2𝐻
(𝑇𝑚 − 𝑇𝑒 − 𝐾𝐷Δ𝜔𝑟)        Equation (5) 

𝑝𝛿 = 𝜔0Δ𝜔𝑟          Equation (6) 

Where Δ𝜔𝑟 is the per unit speed deviation, 𝛿 is the rotor angle in electrical radians, 𝜔0 is the base rotor electrical 

speed in radians per second and 𝑝 is the differential operator 𝑑 𝑑𝑡⁄  with time 𝑡 in seconds. 

Linearizing Equation (5) and substituting for Δ𝑇𝑒 given by Equation (4), we obtain 

𝑝Δ𝜔𝑟 =
1

2𝐻
(Δ𝑇𝑚 − 𝐾𝑠Δ𝛿 − 𝐾𝐷Δ𝜔𝑟)  or  
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𝑝Δ𝑓𝑟 = 2𝜋−1 [
1

2𝐻
(Δ𝑇𝑚 − 𝐾𝑠Δ𝛿 − 𝐾𝐷Δ𝜔𝑟)]      Equation (7) 

Where 𝐾𝑠 is the synchronizing torque coefficient given by 

𝐾𝑠 = (
𝐸′𝐸𝐵

𝑋𝑇
) Cos 𝛿0          Equation (8) 

Linearizing Equation (6), we obtain 

𝑝Δ𝛿 = 𝜔0Δ𝜔𝑟          Equation (9) 

By writing Equations (7) and (8) in vector-matrix form, we obtain 

𝑑

𝑑𝑡
[
∆𝜔𝑟

∆𝛿
] = [

−
𝐾𝐷

2𝐻
−

𝐾𝑠

2𝐻

𝜔0 0
] [

∆𝜔𝑟

∆𝛿
] + [

1

2𝐻

0
] ∆𝑇𝑚      Equation (10) 

𝑥𝑇 = (∆𝜔 ∆𝛿)         Equation (11) 

Equation (11) represents the variable of interest during machine operation. 

The block diagram shown in Figure 6 can be used to describe the small-signal performance. 

Where 

 ∆𝜔𝑟 =  per unit speed deviation  

 𝛿 =  rotor angle in electrical radians   

 𝜔0 =  base rotor electrical speed in radians per second  = 2𝜋𝑓𝑜   

𝑓𝑜 =  fundamental frequency in Hz    

 𝑝 =  differential operator 𝑑 𝑑𝑡⁄ with time t in seconds 

 𝐻 =  Inertia constant 

 𝑇m =  Mechanical torque  

          𝑇𝑒  = Electrical torque with ∆𝑇𝑒 =
𝜕𝑇𝑒

𝜕𝛿
∆𝛿 =

𝐸′𝐸𝐵

𝑋𝑇
𝑐𝑜𝑠𝛿0(∆𝛿) = 𝐾𝑠∆𝛿) 

           𝐾𝑠  =  the synchronizing torque 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 given by equation = (
𝐸′𝐸𝐵

𝑋𝑇
) 𝑐𝑜𝑠𝛿0 

When the flux linkage effect is considered, the field circuit dynamic equation (12) is obtained:  

𝑝𝜓𝑓𝑑 = 𝜔0(𝑒𝑓𝑑 − 𝑅𝑓𝑑𝑖𝑓𝑑) =
𝜔0𝑅𝑓𝑑

𝐿𝑎𝑑𝑢
𝐸𝑓𝑑 − 𝜔0𝑅𝑓𝑑𝑖𝑓𝑑      Equation (12) 

Where 

𝐸𝑓𝑑 =  Exciter output voltage  

𝑒𝑓𝑑 =  Rotor field voltage  

           𝑅𝑓𝑑 =  Rotor field resistance    

            𝑖𝑓𝑑  =  Rotor field current  

 Equations (5) and (6) together with equation (12) describe the dynamics of the synchronous machine with  ∆𝜔𝑟, 

∆𝛿, and ∆𝜓𝑓𝑑 (rotor flux linkage) as state variables. However, the derivatives of these state variables appear in 

these equations as functions of 𝑇𝑒 and 𝑖𝑓𝑑, which are neither state variables nor input variables. This therefore 

requires that 𝑖𝑓𝑑 and 𝑇𝑒 are expressed in terms of the state variables to develop the complete system equations in 

the state-space form for the classical generator model. This requirement gives rise to equations (12) and (13) and 

their manipulation with equations (5), (6), and (13) leads to equation (14) that gives the desired final form for 

classical generator model dynamics. 

∆𝑖𝑓𝑑 =
𝜓𝑓𝑑−𝜓𝑎𝑑

𝐿𝑓𝑑
=

1

𝐿𝑓𝑑
(1 −

𝐿𝑎𝑑𝑠
′

𝐿𝑓𝑑
+ 𝑚2𝐿𝑎𝑑𝑠

′ ) ∆𝜓𝑓𝑑 +
1

𝐿𝑓𝑑
𝑚1𝐿𝑎𝑑𝑠

′ ∆𝛿   Equation (13) 

∆𝑇𝑒 = 𝜓𝑎𝑑0∆𝑖𝑞 + 𝑖𝑞0∆𝜓𝑎𝑑 − 𝜓𝑎𝑞0∆𝑖𝑑 − 𝑖𝑑0∆𝜓𝑎𝑞 = 𝐾1∆𝛿 + 𝐾2∆𝜓𝑓𝑑  Equation (14) 
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Where   

𝐾1 = 𝑛1(𝜓𝑎𝑑0 + 𝐿𝑎𝑞𝑠𝑖𝑑0) − 𝑚2(𝜓𝑎𝑞0 + 𝐿𝑎𝑑𝑠
′ 𝑖𝑞0)     

𝐾2 = 𝑛2(𝜓𝑎𝑑0 + 𝐿𝑎𝑞𝑠𝑖𝑑0) − 𝑚2(𝜓𝑎𝑞0 + 𝐿𝑎𝑑𝑠
′ 𝑖𝑞0) +

𝐿𝑎𝑑𝑠
′

𝐿𝑓𝑑
𝑖𝑞0   

[

∆�̇�𝑟

∆�̇�
∆�̇�𝑓𝑑

] = [

𝑎11 𝑎12 𝑎13

𝑎21 0 0
0 𝑎32 𝑎33

] [

∆𝜔
∆𝛿

∆𝜓𝑓𝑑

] + [
𝑏11 0
0 0
0 𝑏32

] [
∆𝑇𝑚

∆𝐸𝑓𝑑
]    Equation (15) 

𝑥𝑇 = (∆𝜔 ∆𝛿 ∆𝜓𝑓𝑑) Variable of interest      Equation (16) 

∆𝑇𝑚 and ∆𝐸𝑓𝑑 depend on the prime-mover and excitation controls, and with constant mechanical input and 

constant exciter output voltage, ∆𝑇𝑚 and ∆𝐸𝑓𝑑  are, respectively, zero. The mutual inductances 𝐿𝑎𝑑𝑠and 𝐿𝑎𝑞𝑠 are 

saturated values. 

5 Modeling of a Synchronous Machine with associated Controllers 

6 Governor 

The governor or admission valves, also known as control valves (CV), are located in the turbine steam chest and 

control the flow of steam to the high-pressure turbine. The number of governor valves depends on the unit size. 

The governor valves control the quantity of steam flowing to the turbine by changing the valve position. The 

mechanical power developed by the HP turbine depends on the amount of steam flow admitted to the turbine 

through the valve. 

sing perturbed values, the state equation of the exciter model  

𝑝∆𝑣1 =
1

𝑇𝑅
(∆𝐸𝑡 − ∆𝑣1)          Equation (17) 

Where  ∆𝑣1 = Perturbed input voltage to the exciter.  

𝑝∆𝑣1 =
𝐾5

𝑇𝑅
∆𝛿 +

𝐾6

𝑇𝑅
∆𝜓𝑓𝑑 −

1

𝑇𝑅
∆𝑣1       Equation (18) 

The exciter field voltage is given by equation (18), while the perturbed form is given by equation (19): 

𝐸𝑓𝑑 = 𝐾𝐴(𝑉𝑟𝑒𝑓 − 𝑣1)         Equation (19) 

Where 𝐾𝐴 = Exciter gain 

           𝑉𝑟𝑒𝑓 = Reference voltage 

∆𝐸𝑓𝑑 = 𝐾𝐴(−∆𝑣1)         Equation (20) 

The field circuit dynamic equation developed in equation (15) with the effect of the excitation system included 

results in equation (21) (Kundur, 1994): 

𝑝∆𝜓𝑓𝑑 = 𝑎31∆𝜔𝑟 + 𝑎32∆𝛿 + 𝑎33∆𝜓𝑓𝑑 + 𝑎34∆𝑣1     Equation (21) 

        

The expressions 𝑎31, 𝑎32, and 𝑎33 remain unchanged and are given by equation (15). Since the exciter model is 

of first-order, the order of the overall system is increased by 1 and the new state variable added is ∆𝑣1 leading to 

equation (22): 

𝑝∆𝑣1 = 𝑎41∆𝜔𝑟 + 𝑎42∆𝛿 + 𝑎43∆𝜓𝑓𝑑 + 𝑎44∆𝑣1     Equation (22) 

The complete state-space model for the power system with the excitation system included is expressed by equation 

(24): 
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[
 
 
 
 
∆𝜔𝑟

̇

∆�̇�
∆𝜓𝑓𝑑

̇

∆𝑣1
̇ ]

 
 
 
 

= [

𝑎11 𝑎12 𝑎13 0
𝑎21 0 0 0
0 𝑎32 𝑎33 𝑎34

0 𝑎42 𝑎43 𝑎44

] [

∆𝜔𝑟

∆𝛿
 ∆𝜓𝑓𝑑

∆𝑣1

] + [

𝑏1

0
0
0

]∆𝑇𝑚    Equation (24) 

With a constant mechanical torque input, ∆𝑇𝑚 = 0.  

The linearized state equation for the stabilizer is given by Eq. (25):  

𝑝∆𝑣2 = 𝐾𝑆𝑇𝐴𝐵𝑝∆𝜔𝑟 −
1

𝑇𝑊
∆𝑣2       Equation (25) 

Where 𝐾𝑆𝑇𝐴𝐵 is the stabilizer gain, ∆𝑣2 is the perturbed input signal for compensation. Using the expression for 

𝑝∆𝜔𝑟 given by Eq. (15), an expression for 𝑝∆𝑣2 in terms of the state variables is obtained in Eq. (26) and modified 

in Eq. (27): 

𝑝∆𝑣2 = 𝐾𝑆𝑇𝐴𝐵 [𝑎11∆𝜔𝑟 + 𝑎12∆𝛿 + 𝑎13∆𝛹𝑓𝑑 +
1

2𝐻
∆𝑇𝑚] −

1

𝑇𝑊
∆𝑣2    Equation (26) 

𝑝∆𝑣2 = 𝑎51∆𝜔𝑟 + 𝑎52∆𝛿 + 𝑎53∆𝛹𝑓𝑑 + 𝑎55∆𝑣2 +
𝐾𝑆𝑇𝐴𝐵

2𝐻
∆𝑇𝑚   Equation (27) 

𝑝∆𝑣𝑠 =
𝑇1

𝑇2
∆𝑣𝑠 +

1

𝑇2
∆𝑣2 −

1

𝑇2
∆𝑣𝑠       Equation (28) 

The use of equation (27) in equation (28) results in equation (29) given as follows: 

 𝑝∆𝑣𝑠 = 𝑎61∆𝜔𝑟 + 𝑎62∆𝛿 + 𝑎63∆𝛹𝑓𝑑 + 𝑎64∆𝑣1 + 𝑎65∆𝑣2 + 𝑎66∆𝑣𝑠 +
𝑇1

𝑇2

𝐾𝑆𝑇𝐴𝐵

2𝐻
∆𝑇𝑚 

The perturbed field voltage of the exciter is given by Eq. (29): 

∆𝐸𝑓𝑑 = 𝐾𝐴(∆𝑣𝑠 − ∆𝑣1)        Equation (29) 

Hence, the field circuit equation with PSS included is given by equation (30), and the complete state-space model, 

including PSS (with ∆𝑇𝑚 = 0) is given by equation (31). 

𝑝∆𝛹𝑓𝑑 = 𝑎32∆𝛿 + 𝑎33∆𝛹𝑓𝑑 + 𝑎34∆𝑣1 + 𝑎36∆𝑣𝑠     Equation (30) 

[
 
 
 
 
 
 
∆�̇�𝑟

∆�̇�
∆�̇�𝑓𝑑

∆�̇�1

∆�̇�2

∆�̇�𝑠 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
𝑎11 𝑎12 𝑎13 0 0 0
𝑎21 0 0 0 0 0
0 𝑎32 𝑎33 𝑎34 0 𝑎36

0 𝑎42 𝑎43 𝑎44 0 0
𝑎51 𝑎52 𝑎53 0 𝑎55 0
𝑎61 𝑎62 𝑎63 0 𝑎65 𝑎66]

 
 
 
 
 

[
 
 
 
 
 
∆𝜔𝑟

∆𝛿
∆𝛹𝑓𝑑

∆𝑣1

∆𝑣2

∆𝑣𝑠 ]
 
 
 
 
 

    Equation (31) 

The following should be noted: 

The time frame of interest in transient stability studies is usually 3–5 s following the disturbance. It may extend 

to 10–20 s for numerous systems with dominant inter-area swings. 

The time frame of interest in small-disturbance stability studies is on the order of 10–20 s following a disturbance. 

Dynamic stability, along with transient stability, voltage stability, and frequency stability, is the basic requirement 

for a power system to maintain secure operation (Kundur, 1994). However, the time frame of interest is extended 

to 25 s due to the small nature of its disturbance. 

7 Dynamic Stability Assessment Using the Eigenvalue Method  

The state equations (3.107) and (3.108) can be transformed to the frequency domain by Laplace transform as 

given by equations (3.126) and (3.127) (Xiaokang, 1999; Kundur, 1994): 

s∆x(s) − ∆x(0) = A∆x(s) + B∆u(s)       Equation (32) 

s∆y(s) = C∆x(s) + D∆u(s)        Equation (33) 

A block diagram of the state-space representation is shown in Figure 11.  



International Journal of Engineering Sciences and Applied Mathematics (IJESAM) Vol. 15 (5) 

 

pg. 7 

 

 

 
Figure 11: Block diagram of state-space representation (Xiaokang, 1999; Kundur, 1994) 

 

A formal solution of the state equations can be obtained by equations (34) to (36) (Xiaokang, 1999; Kundur, 

1994): 

(sI − A)∆x(s) = ∆x(0) + B∆u(s)       Equation (34) 

∆x(s) = (sI − A)−1[∆x(0) + B∆u(s)] =  
adj (sI−A)

det(sI−A)
(∆x(0) + B∆u(s))  Equation (35) 

∆y(s) = C
adj (sI−A)

det(sI−A)
[∆x(0) + B∆u(s)] + D∆u(s)     Equation (36) 

Where 

I = identity matrix of the same dimension as matrix A. 

det(sI − A) = determinant of the matrix (sI − A) 

adj (sI − A) = adjoint of matrix (sI − A) 

x(0) = state at time t = 0 

The poles of ∆x(s) and ∆y(s) are the roots of equation (37) (Xiaokang, 1999; Kundur, 1994):  

det(sI − A) = 0         Equation (37) 

Equation (37) is called the characteristic equation of matrix A (Kundur, 1994). The number of poles is equal to 

the number of states (Xiaokang, 1999). The values of s that satisfy equation (37) are a function of the state matrix 

A and are called the eigenvalues of matrix A (Xiaokang, 1999; Kundur, 1994).  

For small disturbances, the linearized model of any power system can be analyzed to assess its stability using 

many useful tools. One such valuable tool is the eigenvalue technique. Eigenvalues provide significant 

information on system stability and how close the system is to becoming unstable (Kim and Overbye, 2015). It 

also shows the frequencies and modes that exist in the system, and how the system states interact with these 

modes. Hence, for a stable system, all the poles of the characteristic equation have negative real parts, i.e., all the 

eigenvalues lie in the left half of the complex s plane. For an unstable system, at least one pole or eigenvalue has 

a positive real part. Therefore, eigenvalues, also referred to as system modes, represent the dynamic performance 

of the system (Xiaokang, 1999; Kundur, 1994).  

Referring to equation (37), for each eigenvalue λI (where λ has replaced s), the n-column vector фI which satisfies 

the equation can be obtained from equation (38) as follows: 

𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖  for i = 1, 2, …, n      Equation (38) 
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The column vector фI is called the right eigenvector of A associated with the eigenvalue λi. The dimension of 𝜙I 

is equal to the number of state variables and 𝜙I gives information about the mode shape (i.e., the relative activity 

of the state variables when a particular mode is excited) (Xiaokang, 1999; Kundur, 1994).  

Similarly, there exists an n-row vector ѱ𝑖 which satisfies the equation (39) given by 

𝐴ѱ𝑖 = 𝜆𝑖ѱ𝑖  for i = 1, 2, …, n      Equation (39) 

The row vector ѱ𝑖 is called the left eigenvector of 𝐴 associated with the eigenvalue λI and it measures the 

contribution of the activity of the state variables to a particular mode (Xiaokang, 1999; Kundur, 1994). 

The eigenvalues of a matrix are given by the values of the scalar parameter λ for which there exist non-trivial 

solutions (i.e., other than ϕ = 0) to the equation 

𝐴𝜙 =  𝜆𝜙          Equation (40) 

Where 

𝑨 is an n  n matrix (real for a physical system such as a power system) 

𝝓 is an 𝑛𝑥1 vector 

To find the eigenvalues, equation (41) can be written in the form of 

(𝐴 –  𝜆𝐼)𝜙 =  0          Equation (41) 

For a non-trivial solution 

(det (A –  λI)  =  0          Equation (42) 

The expansion of the determinate gives the characteristic equation. The 𝒏 solution of 𝝀 =  𝝀𝟏, 𝝀𝟐, … . , 𝝀𝒏 are 

eigenvalues of 𝑨  

The eigenvalues may be real or complex. If 𝑨 is real, complex eigenvalues always occur in conjugate pairs. 

For any eigenvalue 𝜆𝑖, the 𝒏-column vector 𝜙𝑖 which satisfies Equation (41) is called the right eigenvector of 𝐴 

associated with the eigenvalue 𝜆𝑖 

Because equation (42) is homogeneous, 𝑘𝜙𝑖 (where k is a scalar) is also a solution. Thus, the eigenvectors are 

determined only within a scalar multiplier. 

Is called the left eigenvector associated with the eigenvalue 𝜆𝑖 

The left and right eigenvectors corresponding to different eigenvalues are orthogonal. In other words, if λ𝑖 is not 

equal to λ𝑗, 

ѱ𝑗𝜙𝑖 = 0          Equation (43) 

However, for eigenvectors corresponding to the same eigenvalue, 

ѱ𝑖𝜙𝑖 = 𝐶𝑖          Equation (44) 

Where 𝐶𝑖 is a nonzero constant. 

Because, as noted above, the eigenvectors are determined only to within a scalar multiplier, it is common practice 

to normalize these vectors so that 

ѱ𝑖𝜙𝑖 = 1          Equation (45) 

To briefly express the Eigen properties of A, it is convenient to introduce the following matrices: 

𝛷 =  [𝜙1, 𝜙2, …… . 𝜙𝑛 ]         Equation (46) 

Ψ = [𝜓1
𝑇     𝜓2

𝑇   ⋯ 𝜓𝑛
𝑇]𝑇         Equation (47) 

∧ = diagonal matrix, with the eigenvalues 𝜆1, 𝜆2, …… . 𝜆𝑛 as diagonal elements 

Each of the above matrices is 𝑛𝑥𝑛. In terms of these matrices, equations (39) and (45) can be expanded as follows. 

𝐴Φ = Φ ∧          Equation (48) 

ѰΦ = 𝐼Ψ = Φ−1         Equation (49) 

If follows from equation (48) 
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Φ−1AΦ = ∧          Equation (50) 

Considering the state equation of with this equation, ∆𝑦 = 𝐶∆𝑥 + 𝐷∆𝑢 ,the free motion is given by 

𝛥ẋ =  𝐴 𝛥𝑥          Equation (51) 

To isolate the parameters that influence the motion in a significant way and to eliminate the cross-coupling 

between the state variables, a new state vector Z related to the original state vector 𝛥𝑥 by the transformation is 

considered. 

𝛥𝑥 =  Φ𝑧          Equation (52) 

Where ϕ is the modal matrix of A defined by equation (46) substituting Equation (52) for  𝛥𝑥 in the state equation 

of (51), equation (53) is derived as follows: 

Φż =  𝐴Φ𝑧          Equation (53) 

Hence, the new state equation can be written as  

ż = Φ−𝟏𝑨Φz          Equation (54) 

In view of equation (50), equation (54) becomes equation (55) 

ż = ∧ 𝑧          Equation (55) 

From equation (51),  𝐴 in general, is a non-diagonal matrix, whereas ∧ in equation (55) is a diagonal matrix. 

 Equation (51) represents 𝑛 uncoupled first-order (scalar) equations: 

�̇�𝑖 = 𝜆𝑖𝑧𝑖                         𝑖 = 1,2, ……… . 𝑛      Equation (56) 

Equation (52) was transformed to uncouple the state equations. Therefore, is to uncouple the state equations. 

Equation (57) is a simple first-order differential equation whose solution with respect to time 𝑡 is given (57) 

 𝑧𝑖(𝑡) = 𝑧𝑖(0)𝑒𝜆𝑖𝑡           Equation (57) 

Where 𝑧𝑖(0) is the initial value of 𝑧𝑖. 

From Eq. (52), the response in terms of the original state vector is given by Eq. (58) 

Δx(t) =  ϕz(t) =  [𝜙1 𝜙2 ⋯ 𝜙𝑛] [

𝑧1(𝑡)

𝑧2(𝑡)
⋮

𝑧𝑛(𝑡)

]      Equation (58) 

This implies that equation (57) gives equation (59) 

∆𝑥(𝑡) =
𝑛

∑𝜙𝑖

𝑖 = 1
𝑧𝑖(0)𝑒𝜆𝑖𝑡        Equation (59) 

From equation (57), equation (60) is obtained 

𝑧𝑖(𝑡) = Φ−1∆𝑥(𝑡) = Ψ∆𝑥(𝑡)       Equation (60) 

Equation (58) can be written as equation (61): 

𝑧𝑖(𝑡) = ψ∆𝑥(𝑡)          Equation (61) 

With 𝒕 = 𝟎, it follows that 

𝑧𝑖(0) = 𝜓𝑖∆𝑥(0)           Equation (62) 

By using c𝑖 to denote the scalar product ψ𝑖∆𝑥(0), equation (59) may be written as follows:  

∆𝑥(𝑡) =
𝑛

∑𝜙𝑖

𝑖 = 1
𝑐𝑖𝑒

𝜆𝑖𝑡          Equation (63) 

i. Real eigenvalue corresponds to the non-oscillatory mode.  

ii. A negative real eigenvalue indicates a mode that decays over time  

iii. (the larger the magnitude of the eigenvalue the quicker the decay). 
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iv. A positive real eigenvalue indicates a mode that grows with time and that the system will experience 

aperiodic instability.  

v. Conjugate pair complex eigenvalues indicate oscillatory modes of response.𝜆 =  σ ±  jω  

vi. If a conjugate of a pair of complex eigenvalues has negative real parts σ this corresponds to an oscillatory 

mode that decays with time, and the system is said to be globally stable. 

vii. If a pair has positive real parts, the corresponding oscillatory mode grows exponentially with time and 

eventually dominates the system behavior. Such a system is considered unstable. 

viii. If any one of the eigenvalues has a real part, the system will have an undamped oscillatory response. 

 

8 Results and Discussion 
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(d) 

Figure 1: Signal graph of real and imaginary eigenvalues of rotor angle for 

(a) Afam (b) Delta (c) Egbin and (d) Jebba-G. 
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Figure 2: Signal graph of real and imaginary eigenvalues of rotor angle for 

(a) Kanji (b) Mambilla (c) Papalanto, and (d) Sapele. 

 

 

 
(a) 

 

 
(b) 

  



International Journal of Engineering Sciences and Applied Mathematics (IJESAM) Vol. 15 (5) 

 

pg. 12 

 
(c) 

 
(d) 

 

 
(e) 

Figure 3: Signal graph of real and imaginary eigenvalues of rotor angle for 

(a) Shiroro (b) Gwagwalada (c) Lokoja (d) Okpai and (e) Owerri. 

(b)  

Table 1: Comparative analysis of the eigenvalue results of Rotor Angle (Without Governor, With Governor and 

With Governor + Power System Stabilizer) 

  Without Governor With Governor Governor + PSS 

S/N STATION ∆𝛿 ∆𝛿 ∆𝛿 

1 Afam -0.14418 - j4.38057 -0.14418 - j4.38057 -25.9487 - j43.3075 

2 Delta -0.12889 - j3.14 -0.12889 - j3.14 -25.1746 - j52.2164 

3 Egbin -0.146466 - j4.08662 -0.146466 - j4.08662 -25.2877 - j47.6105 

4 Jebba-G -0.289596 - j6.14081 -0.289596 - j6.14081 -27.3367 - j59.4155 

5 Kainji -0.295413 - j5.99661 -0.295413 - j5.99661 -25.326 - j56.2498 

6 Mambilla -0.401299 - j5.6904 -0.401299 - j5.6904 -22.9999 - j48.0256 

7 Papalanto -0.316098 - j4.62576 -0.316098 - j4.62576 -27.2532 - j52.5016 
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8 Sapele -0.399808 - j5.75089 -0.399808 - j5.75089 -28.7473 - j50.3302 

9 Shiroro 0.601244 - j11.9495 -0.601244 - j11.9495 -15.025 - j52.8714 

10 Gwagwalada -0.398682 - j5.78186 -0.398682 - j5.78186 -23.8332 - j47.0087 

11 Lokoja -0.398682 - j5.78186 -0.398682 - j5.78186 -23.8332 - j47.0087 

12 Okpai -0.39842 - j5.75232 -0.39842 - j5.75232 -23.1967 - j46.2208 

13 Owerri -0.398603 - j5.77241 -0.398603 - j5.77241 -23.6162 - j46.7129 

 

Table 1 shows the comparative analysis of the eigenvalue result of the rotor angle, without governor, with 

governor, and with governor + power system stabilizer obtained from the eigenvalue graphs of figures 1, 2, and 

3. It was observed that there were no changes when the systems ran without a controller and governor. It is not 

practicable to run a generator without a governor. The results showed that rotor angle (𝛿) was in a stable state for 

all 13 generators in the network with eigenvalues obtained having negative real parts with and without controllers; 

although a better system stability level was obtained with G + PSS compared to G because the real part of the 

obtained eigenvalues was much lower in value. 

4. CONCLUSION In this work, we have quantitatively shown that the use of G + PSS produced better system 

stability level as compared with G only, because the real part of the obtained eigenvalues was much lower in 

value.  
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