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 Recent advancements in statistical methodologies have significantly 

improved the ability to detect treatment effects and test the equality of 

central tendency parameters while simultaneously controlling Type I 

error rates and enhancing statistical power. This paper reviews the 

progress made in these methods, particularly in one-way independent 

group designs. Key developments include more flexible statistical 

techniques and computational advancements, which address practical 

challenges that were previously considered insurmountable. The 

integration of robust theoretical frameworks with advanced 

computational tools has enabled researchers to better manage Type I 

errors and optimize the detection of genuine treatment effects. These 

advancements are crucial for applied researchers, as they enhance the 

capacity to identify true differences between groups and increase the 

likelihood of detecting meaningful effects. This review provides 

insights into the evolution of these methods and their implications for 

improving research outcomes. 
 

 

INTRODUCTION  

 In recent years, numerous methods for locating treatment effects or testing the equality of central tendency 

(location) parameters by simultaneously controlling the Type I error and the power to detect treatment effects are 

being studied. Progress has been made in terms of finding better methods for controlling the Type I error and the 

power of the test that detects treatment effects in one-way independent group designs (Babu et al., 1999; Othman 

et al., 2004; Wilcox and Keselman, 2003). Through a combination of impressive theoretical developments, more 

flexible statistical methods, and faster computers, serious practical problems that seemed insurmountable only a 

few years ago can now be addressed. These developments are important to applied researchers because they greatly 

enhance the ability to discover true differences between groups while maximizing the chance of detecting a genuine 

positive effect.  
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Let us look at the example of analysis of variance (ANOVA), and the drawbacks of this method when assumptions 

are not met. ANOVA is one of the most commonly used statistical methods for locating treatment effects in one-

way independent group design. Generally, violating the assumptions associated with standard ANOVA method can 

seriously hamper the ability to detect true differences.  

Non-normality and heteroscedasticity are the two usual assumption violations detected in ANOVA. In particular, 

when these problems occur at the same time, rates of Type I error is usually inflated, thus resulting in spurious 

rejections of the null hypotheses. They can also substantially reduce the power of a test, resulting in treatment 

effects going undetected. Reduction in the power to detect differences between groups occurs because the usual 

population standard deviation (σ) is very sensitive to outliers and will be greatly influenced by their presence. 

Consequently, the standard error of the mean ( σ2 n) can become seriously inflated, when the underlying distribution 

has heavy tails (Wilcox and Keselman, 2002). Therefore, the standard error of the F statistics is larger than it should 

be and power accordingly will be depressed. In order to achieve a good test, one needs to be able to control Type 

I error and power of test. In other words, neither should power be lost nor Type I error be inflated.  

In their efforts to control the Type I error and power rate, investigators looked into numerous robust methods since 

these methods generally are insensitive to assumptions about the overall nature of the data (e.g. Babu et al., 1999; 

Keselman et al., 2004; Kulinskaya et al., 2003; Luh and Guo, 1999; Othman et al., 2004). Any small deviations 

from the model assumptions should only slightly impair the performance, for example, the level of a test should 

be close to the nominal value calculated at the model, and larger deviations from the model should not cause 

catastrophe. Robust measures of central tendency such as trimmed means, medians or Mestimators (Huber, 1981; 

Staudte and Sheather, 1990; Wilcox, 1997) have been considered as alternatives for the usual least squares 

estimator, that is, the usual least squares mean, in most research recently (Keselman et al., 2004; Luh and Guo, 

1999; Wilcox et al., 1998; Wilcox and Keselman, 2002). These measures of central tendency had been shown to 

have better control over Type I error and power to detect treatment effects (Lix and Keselman, 1998; Othman et 

al., 2004; Wilcox, 1997; Yuen, 1974). Yuen (1974) found these benefits in the two-group case of trimmed means 

and Lix and Keselman (1998) demonstrated similar results in the more than twogroup problem. Other investigators, 

for example, Babu et al. (1999) used median as the central tendency measure when dealing with skewed 

distribution and Wilcox and Keselman (2003) introduced a modified one-step Mestimator (MOM) as the central 

tendency measure when testing for treatment effects.  

 METHODS  

 This paper focuses on the Ft method with three difference methods of trimming namely (i) fixed symmetric 

trimming (ii) predetermined asymmetric trimming and (iii) adaptive trimming using MOM. The three trimming 

methods are different, in the sense that, for the fixed symmetric trimmed mean, data is symmetric and trimming 

was done equally on both sides of the distribution or no trimming at all. As for predetermined asymmetric trimmed 

mean, data is either right skewed or left skewed, thus the trimming is done on the skewed side of the distribution. 

Both of the trimmed mean in (i) and (ii) adopts 15% total amount of trimming. The third, which is the MOM 

trimmed means need no fixed amount of trimming, but were empirically determined.  

 Ft statistic  

 Lee and Fung (1985) introduced a statistic that was able to handle problems with sample locations when the 

variance for the population is equal. This statistic was named trimmed F statistic, Ft. Their work focused on the 

best trimming percentages that is able to control Type I error and to provide good power rates. They recommended 

the trimmed F statistic with 15% symmetric trimming as an alternative to the usual F test especially when the 

distribution is long tailed symmetric. This method had also been proven to be easy to program.  



International Journal of Engineering Sciences and Applied Mathematics (IJESAM) Vol. 15 (6) 

 

pg. 3 

= tj X 

  

To further understand the Ft method, let X (1) j, X (2) j,, X(nj ) j 

 be an ordered sample of group j with  

size nj and let  

 k j =[gnj ]+1  

 where [x] is the largest integer ≤ x .  

 We calculated the g-trimmed mean of group j by using:  

  1 nj −g2 j 

X(i) j 

 n j −g1j −g2 j i=g1 j +1 

  g1j =number  of  observations X(i) j such  

Where,  

(X(i) j −M j )<-2.24 (scale estimator), g2 j =number of  

that 

observations X(i) j such  that (X
(i) j −M j )>  2.24  (scale  

M j = median of group j and the scale estimator is  

estimator),  

MADn. nj = group sample sizes  

  

For the equal amounts of trimming in each tail of the distribution, the Winsorized sum of squared deviations is 

defined as:  

  
SSDtj =(gj +1)(X(gj+1) j −X tj )2 +(X(gj+2) j −X tj )2 +...  

+(X(nj−gj−1) j −X tj )2 +(gj +1)(X(nj −gj ) j −X tj )2 

When allowing different amounts of trimming in each tail of the distribution, the Winsorized sum of squared 

deviations is then defined as,  

 SSDtj = (g1j +1)(X (g1 j +1)j −X tj )2 +(X (g1 j +2)j −X tj )2 +... 

 +(X (nj −g2 j −1)j −X tj )2 +(g2 j +1)(X (nj −g2 j )j −X tj )2 

 −{(g1j )[X (g1 j +1)j −X tj ]+(g2 j )[X (n j −g2 j )j −X tj ]}2 /n j 

 Note that we used trimmed means in the SSDtj formula instead of Winsorized means.  

 Hence the g-trimmed F is defined as:  

  

 J ( )2 ( ) 

 X tj − X t/ J −1 

Ft ( j) = j=1 J 

SSDtj /(H − J ) 

 j=1   

 J ( )2 

X tj − X t /(J −1) SSDtj /(H − J) 

Ft ( j) = j=1 J 

 j=1       
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hj =n j −g1j −g2 j ,  

Where, J  =  number  of  groups,  

H = J hj X t = J hj X tj / H j=1  and  j=1   

 Ft (g) will follow approximately an F distribution with (J – 1, H – J) degree of freedom.  

 Fixed symmetric trimmed mean  

 X(1) j ≤X(2) j ≤...≤X(nj ) j 

Let   represent the ordered observations associated with the jth group. In order to calculate the 100g% sample 

trimmed mean, define  

 XLj = (1 – r)X(k + 1)j + rX(k)j    and      

 XUj = (1 – r) X(nj−k) j + r X(nj−k+1) j    

 Where, g represents the proportion of observations that are to be trimmed in each tail of the distribution.  

 k =[gnj ]+1  

 where [gn j ] is the largest integer ≤ gn j
 and 

r = k −gn j .  

 The jth group trimmed mean is given by  

  = 1 nj−k + + 

Xtj (1−2g)nj i=k+1X(i)j r(X(k)j X(nj−k+1)j) 

 Its corresponding sample Winsorized mean is given by  

 X wj = 1 nj−k X(i) j +k(XLj +XUj) 

 nj i=k+1     

 The g-Winsorized sum of squared deviations is then calculated as  

 SSD=nj−kj(X−X )2 wjij wgj i=kj+1   

 +k (X −X )2+(X −X )2 j kj+1,j wgj nj−kj,j wgj 

 Predetermined asymmetric trimmed mean  

 X(1) j , X(2) j ,..., X(nj ) j 

Let   be an ordered sample of group j with  

size nj. According to Reed (1998), the γ-trimmed mean ( X tj ) is defined as  

 n −k 

X tj =jjX (i) j +(k j −γn j )(X (k) j + X n j −k j −1) 

i=k j +1 

 where γ is a proportion that has been trimmed from each tail.  

 Reed and Stark (1996) proposed an adaptive linear estimator that has the capability of asymmetric trimming. They 

defined their approach as follows:  

 Set the value for the total amount of trimming from the sample, γ . Determine the proportion to be trimmed from 

the lower end of the sample (γ1) by the proportion  

 γl =γ UWx 

 UWx +LWx ,  

 Where,  =U0.2 − L0.2 and  =U0.5 − L0.5  

The upper trimming proportion is then given by γu =γ−γ1  

 The Winsorized variance Stj2 is defined as:  

  

Stj2 =nj −k j (X(1) j − X tj )2 + k j (X(k) j − X tj )2 + k j (X nj −k j +1 − X tj )2 

 i=k j +1   
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= tj X 

 k j = [γn j ]+1.  

where Yi is the ith ordered observation and observations X(i) j such that(X(i) j −M j )> 2.24 MADn,  

M j = median of group j and nj = group sample sizes  

 MOM trimmed mean  

 X(1) j , X(2) j ,..., X(nj ) j 

Let be an ordered sample of group j with size nj. We calculated the MOM trimmed mean of group j by using:  

  1 nj −g2 j 

X(i) j 

n j −g1j −g2 j i=g1 j +1    

  g1j =number  of  observations X(i) j such  

Where,  

(X(i) j −M j )<-2.24 MADn, g2 j =number of  

that 

Table 1. Some properties of the g- and h- distribution.  

  G  h  Skewness  Kurtosis  Shape  

 0.0  0.0  0.0  3.0  Normal  

 0.5  0  1.81  9.7 Skewed normal-tailed  

 0.5  0.5  120.1  18393.6 Skewed heavy-tailed  

  

  

  

 

The value 2.24 was suggested by Wilcox and Keselman (2003). This value is used when checking the extreme 

values, as it has a reasonably small standard error when sampling from normal distribution. MADn is a value of 

MAD/0.6745. For the equal amounts of trimming in each tail of the distribution, the Winsorized sum of squared 

deviations is defined as:  

  
SSDtj =(gj +1)(X(gj+1) j −X tj )2 +(X(gj+2) j −X tj )2 +...  

+(X(nj−gj−1) j −X tj )2 +(gj +1)(X(nj −gj ) j −X tj )2 

When allowing different amounts of trimming in each tail of the distribution, the Winsorized sum of squared 

deviations is then defined as,  

 SSDtj = (g1j +1)(X (g1 j +1)j −X tj )2 +(X (g1 j +2)j −X tj )2 +... 

 +(X (nj −g2 j −1)j −X tj )2 +(g2 j +1)(X (n j −g2 j )j −X tj )2 

 −{(g1j )[X (g1 j +1)j −X tj ]+(g2 j )[X (n j −g2 j )j −X tj ]}2 / n j  

Note that we used trimmed means in the SSDtj formula instead of Winsorized means  

 Empirical investigation  

 In studying the robustness of the procedures, four variables were manipulated, creating conditions which are 

known to highlight the strengths and weaknesses of the tests. The four variables were: (1) balanced and unbalanced 

sample sizes, (2) variance heterogeneity, (3) pairing of group variances and group sample sizes, and (4) types of 

distributions.  

To examine the effect of sample sizes on Type I error rates of the investigated procedures, balanced and unbalanced 

sample sizes were assigned to the case of four groups (J = 4). Total sample sizes for J = 4 was set at 60 and 80. For 
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the unbalanced sample sizes, each of the four groups were arbitrarily assigned different numbers of observations 

(nj), namely, n1 = 12, n2 = 14, n3 = 16 and n4 = 18 for N = 60. When N was set at 80, the sample sizes were 

distributed as n1 = 10, n2 = 20, n3 = 20 and n4 = 30. For the convenience of comparison, the total for the balanced 

sample sizes were kept constant at 60 and 80. Such that for N = 60, the number of observations for each group was 

pegged at 15 (that is, n1 = 15, n2 = 15, n3 = 15 and n4 = 15), and for N = 80, it was pegged at 20 (that is, n1 = 20, 

n2 = 20, n3 = 20 and n4 = 20). To investigate the effect of variance heterogeneity on Type I error rates, variances 

with a 1:1 and 1:36 ratio were assigned to the groups. To evaluate the robustness of the procedures in relation to 

the nature of the pairings, each of the proposed procedures was examined under two types of pairings, namely, 

positive and negative. In investigating the effects of distributional shape on Type I error, three types of distributions 

representing different levels of skewness (that is normal, skewed normal-tailed and skewed heavy-tailed) using the 

g- and h- distributions were considered. The g- and h- distributions were modified from normal distribution with 

constant g controlling the value of skewness and h controlling the value of kurtosis. The level of skewness and 

kurtosis will increase as the value of g and h increase, respectively. The data is symmetric when g = 0 and h = 0. 

The values of (g,h) used in this study are (0,0), (0.5,0) and (0.5,0.5). Table 1 summarizes the skewness and kurtosis 

values for the three selected situations (Wilcox, 1997).  

This study was based on simulated data. For data generation, SAS function RANNOR (SAS Institute, 1999) was 

used to obtain pseudo-random standard normal variates. Observations of the g- and h- distribution were generated 

by converting the standard normal variates using the following equation:  

  exp(gZij )−1 2 

Yij = exp(hZij /2) g  for g 0  and  

Yij = Zij exp(hZij2/2) for g = 0.  

In examining the Type I error rates, the group location measures were set to zero. For each condition examined, 

5000 data sets were generated. The nominal level of significance was set at α = 0.05.  

  

  

RESULTS  

 In order to evaluate the particular conditions under which a test is robust, the Bradley’s liberal criterion of 

robustness (Bradley, 1978) was employed. According to this criterion, in order for a test to be considered robust, 

its empirical rate of Type I error must be within the interval of 0.025 and 0.075. Type I error rates are considered 

liberal when they are above the 0.075 limit while those below the 0.025 limit are considered conservative.  

Tables 2, 3, 4 and 5 show the empirical results of Type I error rates for Ft statistic using fixed 15% symmetric 

trimmed mean, , predetermined asymmetric trimmed mean and MOM trimmed mean for different sample sizes 

and types of variances. The bold entries denote the robust result. When the sample sizes are equal, and variance 

are homogenous, the overall performance of the procedures, which is represented by the “Average” Type I error 

rates shows that, with the exception of the MOM procedure, all the other procedures are robust as their values fall 

within Bradley’s robust criterion interval for N =  

60. The (0.0424) established itself as the best procedure with its Type I error rates being nearest to the nominal 

level, followed closely by the asymmetric (0.0288) procedures. As the total sample size increases, the number of 

robust values decreases. With regard to distributional shape, the  procedure is the best ranked for all types of 

distribution regardless of N. The asymmetric procedures also performed exceptionally well under normal and 

skewed normal-tailed distribution, but failed to perform under skewed heavy-tailed. In contrast, the MOM 

procedure does not perform under normal and skewed normal-tailed distribution but displays a remarkable 
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performance when tested under skewed heavy-tailed distribution. As the N increases, the performance gets better 

for MOM procedure. MOM procedure gives better performance than the   procedure when the distribution is 

skewed heavy-tailed.  

When the condition of variance changes to heterogeneous while retaining the equal sample sizes, the procedures 

using predetermined asymmetric trimmed mean resulted in Type I error rates within the robustness criterion for 

both N = 60 and N = 80 under normal and skewed heavy-tailed distribution (Table 3). As for skewed normal-tailed 

distributions, none of the procedures satisfies the Bradley’s liberal criterion of robustness.  

Looking across the Table 4 values, every entry in the first column that belongs to the ν, is highlighted in bold, 

which reflects that the procedure has good control of Type I error rates across the three types of distributions for 

both sample sizes. The results improved as the total sample size increases. The results also show that asymmetric 

procedure is robust when the distributions are normal and skewed normal-tailed. The MOM is robust when the 

distribution is skewed heavy-tailed regardless of N. The results of the investigation on unequal sample sizes and 

heterogeneous variances are presented in Table 5. For this case, there is an additional column for the pairing 

category. Positive pairing refers to the case in which the largest sample size is associated with the largest group 

variance and the smallest sample size is associated with the smallest group variance. While negative pairing refers 

to the case in which the smallest sample size is associated with the largest group variance, and the largest sample 

size is associated with the smallest group variance.  

As shown in Table 5, the Ft statistic with νare robust across the three types of distributions under positive pairing 

only for both total sample sizes. Like the Ft with ν, the Ft with asymmetric trimming also robust when the pairing 

is positive throughout the three distributions for N = 60, as the number of total sample size increases to N = 80, 

the number of robust Type I error rates dwindles to only one, that is when the pairing is positive under normal 

distribution. While for Ft with MOM, none of the Type I error is robust when N = 60 but as N increases to 80, the 

procedure becomes robust under normal and skewed normal-tailed distribution but this happened for positive 

pairing only. None of the procedures seem to be robust when the pairing is negative. The overall result based on 

the “Grand Average” shows that, the Type I error rates are within the Bradley’s interval only for Ft with asymmetric 

estimator. 

 

 

Table 2. Type I error rates (Equal sample sizes with homogenous variances).  

  

  

(15%

)  

 
Asymmetr

ic (15%)  

MOM   

(15%

)  

Asymmetr

ic (15%)  

MO

M  

Normal  0.108

4  

0.1028  0.1740  0.109

6  

0.0746  0.166

4  

Skewed normal- tailed  0.107

8  

0.0994  0.2106  0.111

8  

0.0760  0.204

8  

Skewed heavy-tailed  0.091

6  

0.0508  0.1184  0.096

8  

0.0196  0.102

6  
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  N = 60 (15, 15, 15, 15)  N = 80 (20, 20, 20, 20)  Variances (1:1:1:1)  Variances (1:1:1:1)   

(15%)  Asymmetric (15%)  MOM   (15%)  Asymmetric (15%)  MOM  

Normal  0.0476  0.0314  0.1260  0.0488  0.0196  0.1204  

Skewed normal-tailed  0.0446  0.0404  0.1686  0.0478  0.0140  0.1592  

Skewed heavy-tailed  0.0350  0.0146  0.0588  0.0384  0.0006  0.0472  

Average  0.0424  0.0288  0.1178  0.0450  0.0114  0.1089  

Table 3. Type I error 

rates (Equ 

al sample sizes 

with  

heterogeneous 

varia nces).  

   

  N = 60 (15, 15, 15, 15)   N = 80 (20, 20, 20, 

20)  

 

  Variances (1:1:1:36)   Variances (1:1:1:36)   

 Table 4. Type I error rates (Unequal sample sizes with homogeneous variances).  

  

  N = 60 (12, 14, 16, 18)  N = 80 (10, 20, 20, 30)  

  Variances (1:1:1:1)  Variances (1:1:1:1)  

  

 

 

 

 

 

 

 

 

Average  0.102

6  

0.0843  

0.1676  

0.106

1  

0.0567  0.157

9  

   (15%)   Asymmetric (15%)  MOM   (15%)  Asymmetric (15%)  MOM  

Normal  0.0476  0.0312  0.1194  0.0532  0.0224  0.1162  

Skewed normal- tailed  0.0458  0.0382  0.1632  0.0530  0.0272  0.1508  

Skewed heavy-tailed  0.0342  0.0164  0.0572  0.0474  0.0170  0.0542  

Average  0.0425  0.0286  0.1133  0.0512  0.0222  0.1071  
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Table 5. Type I error rates (Unequal sample sizes with heterogeneous variances).  

     N = 60 (12, 14, 16, 18)  N = 80 (10, 20, 20, 30)    Variances (1:1:1:36) 

 Variances (1:1:1:36)  

      (15%) Asymmetric (15%)  MOM   (15%) Asymmetric (15%) MOM  

 

Normal  

  

Positive  

Negative  

  

0.0696 

0.1434  

  

0.0574 0.1676  

  

0.1208 

0.2440  

  

0.0356 

0.2692  

  

0.0284 0.2622  

  

0.0652 

0.3812  

  

Average    0.1065  0.1125  0.1824  0.1524  0.1453  0.2232  

                

Skewed normal- tailed  

  

Positive  

Negative  

  

0.0688  

0.1408  

  

0.0626  

0.1510  

  

0.1482  

0.2796  

  

0.0358  

0.2720  

  

0.0202  

0.2696  

  

0.0878  

0.4184  

  

                

Average    0.1048  0.1068  0.2139  0.1539  0.1449  0.2531  

                

Skewed heavy-tailed  Positive  0.0526  0.0332  0.0702  0.0292  0.0056  0.0284  

  Negative  0.1172  0.0884  0.1720  0.2594  0.1508  0.3112  

                

Average    0.0849  0.0608  0.1211  0.1443  0.0782  0.1698  

Grand Average    0.0987  0.0934  0.1725  0.1502  0.1228  0.2154  

          

 DISCUSSION AND CONCLUSION  

 Our goal is to search for some alternative methods in testing the equality of central tendency (location) measures 

for skewed distributions. For the homogeneous variances, regardless of sample design (balanced or unbalanced), 

the Ft procedures with fixed symmetric trimmed mean, ν performed so well under normal-tailed distribution, but 

lost control over Type I error under extreme conditions. When researchers suspect that their data is extremely 

skewed, in a manner similar to the characteristics of the g- and h- distribution (g = 0.5 and h = 0.5), then clearly, it 

will be advantageous to adopt MOM procedures. As for heterogeneous variances, a predetermined asymmetric 

trimmed means which used 15% total amount of trimming should be considered as an alternative particularly for 

testing the equality of four groups.  

These modified methods may serve as alternatives to some other robust statistical methods which are unable to 

handle either the problem of non-normality, variance heterogeneity or unbalanced design. This study may generate 

ideas for future research in robust methods simultaneously contributes to filling the gaps in the literature in this 

field.  
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