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 Waste segregation has emerged as a pressing global issue in recent years, 

with significant environmental implications. A staggering 242 million 

tonnes of plastic waste were generated worldwide in 2016, constituting 

12% of total solid waste, as highlighted by a study conducted by the 

World Bank in 2018. The persistence of non-biodegradable waste in the 

environment poses significant challenges and threatens ecosystems. 

Conversely, biodegradable waste has minimal environmental impact, 

undergoing degradation through natural forces like fire, water, air, 

microorganisms, and soil. 

In the field of deep learning, Convolutional Neural Network (CNN) 

models have proven instrumental in training and testing large image 

datasets. These models utilize convolutional layers comprising filters, 

pooling layers, and fully connected layers to process input images. To 

address the issue of insufficient training data, transfer learning, a 

powerful technique in deep learning, has gained prominence due to its 

wide range of applications. 

This paper focuses on reviewing transfer learning models within the 

Keras library and utilizing CNNs to classify waste into biodegradable 

and non-biodegradable categories. Furthermore, the study investigates 

the impact of crucial hyperparameters such as activation function, batch 

size, learning rate, and optimizers on waste image classification. To 

identify the optimal hyperparameters, the CNN model's train, test, and 

validation accuracy are considered. 

The paper is structured as follows: the second section provides a 

comprehensive review of related works, while the third section outlines 

the dataset and methodologies employed for waste classification. 

Finally, the concluding section presents a summary of the study's 

findings. This research contributes to the development of effective waste 

management strategies by leveraging deep learning techniques for 

accurate waste segregation and classification. 
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1 Introduction 

Waste segregation has become an increasingly widespread problem in the recent years. According to a study 

published by the World Bank in 2018 [1], 242 million tonnes of plastic waste were produced globally in 2016, 

accounting for 12% of total solid waste. Non-biodegradable wastes persist in the environment for a long time. 

They do not naturally degrade, causing havoc on the environment. Biodegradable garbage has no negative 

environmental impact. They are degraded by natural forces such as fire, water, air, microorganisms, and soil. 

Convolutional Neural Network (CNN) models are used in deep learning to train and test large datasets of images 

[2]. Every input image will be processed by a set of convolutional layers that include filters, pooling layers, and 

fully connected layers [3]. Transfer learning is a powerful deep learning technique that can aid in solving the 

problem of insufficient training data. Because of its wide range of applications, transfer learning has become a 

promising area in machine learning [4]. This paper aims to review the Transfer learning models in the Keras 

library and train CNNs to sort waste into biodegradable and non-biodegradable categories. In addition, the impact 

of hyper-parameters like activation function, batch size, learning rate, and optimizers on waste image 

classification has been investigated. The best hyper-parameters are selected based on the CNN model’s train, test, 

and validation accuracy. The following is a break-down of the paper’s structure. The second section discusses a 

review on the related works. In the third section, the dataset and waste classification methodologies are 

demonstrated. The concluding section summarizes the study’s findings. 

2 Related works 

TrashNet is a dataset created by Yang and Thung [5] containing 2527 images divided into six categories: glass, 

paper, cardboard, plastic, metal, and trash. The TrashNet dataset has been explained in detail in the upcoming 

sections. Bircanoglu et al. [6] developed RecycleNet, a lightweight CNN model for trash classification. Even 

though RecycleNet only achieved around eighty percent accuracy on the TrashNet, it reduced time complexity by 

reducing the number of parameters from seven to seven to three million. AlexNet was proposed in 2012 by Alex 

Krizhevsky et al., and it performed well in the image categorization challenge [7]. Kennedy et al. used the Visual 

Geometry Group 19 (VGG-19) [8] to classify trash and attained an accuracy of 88 percent, proving the utility of 

VGG-19’s ability to extract features [9]. Radiuk [10] looked at the effect of batch size on CNN image 

classification performance in 2017. The larger the batch size, the higher the network accuracy, according to the 

author’s findings, implying that batch size has a substantial impact on CNN performance. A batch size of thirty-

two, according to Bengio [11], is a good starting point, and the number can be tuned further. The LeNet-5 CNN 

was proposed by Yann LeCun, Leon Bottou, Yosuha Bengio, and Patrick Haffner in 1998 [12]. It was one of the 

earliest CNNs containing 5880 connections and twelve trainable parameters. The seven layers include three 

convolutional layers, two pooling layers, and one fully connected layer. There are eighty-four units in the fully 

connected layer [13]. The AlexNet was founded in 2012 and had over sixty-two million parameters. This network 

achieved a top-5 error of 15.3% in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [14]. The 

ILSVRC was used to develop this model, which used a part of the ImageNet database. The data holds 1.4 million 

images over one thousand object classes. The ReLU (Rectified Linear Unit) function [14] introduces nonlinearity 

in the network. VGG16 and VGG19 networks were proposed by K. Simonyan et al. and A. Zisserman et al. [15]. 

The weight layers in VGG16 are thirteen convolutional layers, three fully connected layers, and a softmax layer. 

VGG19, on the other hand, has nineteen layers: sixteen convolutional layers, three fully connected layers, and a 

softmax layer. There are over 138 million parameters in VGG16 and 143 million in VGG19. There are sixty-four 

filters of size 3 × 3 in the first two layers. The input image dimension is changed to 224 × 224 × 64 with a max-

pooling layer of stride two. Residual Neural Network (ResNet) network introduces the term ‘residual learning’ 

[16]. The fifty-layer ResNet won the ILSVRC in 2015. There are four stages to the ResNet50 model, including a 

Convolution and Identity block. Each convolution block and each identity block have three convolution layers. 

In the ResNet architecture, the first convolution is done with 7 × 7 size filters. At the same time, a 3 × 3 size filter 

is used to perform max pooling. To improve the network’s performance, the Deep Residual Network uses 

bottleneck residual block architecture. InceptionV3, also known as GoogleNet, is an upgraded version of 
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InceptionV1 [17]. The InceptionV3 model consists of a basic convolutional block, an improved Inception module, 

and a classifier. There are forty-eight layers and over twenty-four million parameters in it. Inception is divided 

into three modules: Inception-A, Inception-B, and Inception-C. The eleven convolutional kernels are commonly 

used to reduce the number of feature channels and speed up training [18]. At the end of the Inception modules, 

three fully connected layers allows to use the pre-trained model and fine-tune the parameters [19]. 

InceptionResNetV2, also known as the hybrid inception model, is designed on the Inception architecture while 

additionally including residual connections. Each branch has a concatenated set of filters with sizes ranging from 

1 × 1 to 3 × 3, 5 × 5. This model includes Inception ResNet-A, Inception ResNet-B, and Inception ResNet-C [19]. 

Each Inception block is linked to a 1 × 1 filter expansion layer, which is used to scale up the dimensions of the 

filter bank before adding it. Xception includes a redesigned inception block that replaces several spatial 

dimensions such as 1 × 1, 5 × 5, and 3 × 3 with a single dimension followed by a 1x1 convolution to reduce 

computational complexity. Entry Flow, Middle Flow, and Exit Flow are the three major blocks. CNNs are used 

in thirty-six layers. Except for the first and last modules, these layers are divided into 14 modules surrounded by 

linear residual connections. The data first passes through the entering flow, then through the middle flow eight 

times, and finally through the exit flow. All Convolution and depth wise separable Convolution layers are batch 

normalized [20]. With 132 layers and over eight million parameters, DenseNet121 is a densely connected 

convolutional network [21]. In the DenseNet design, the first is the convolution block, which is the same as the 

identity block in ResNet. The dense block, in which the convolution blocks are concatenated and densely coupled, 

is the second part. The Dense block [21] is the principal component of the DenseNet architecture. The feature 

maps in the dense block are all the same size. The final layer is the transition layer, connecting two continuous 

dense blocks. The use of a transition block reduces the dimension of feature maps. With over three million 

parameters [23], MobileNetV2 is based on a linear bottleneck layer and an inverted residual structure [22]. There 

are two types of blocks in MobileNetV2. The first, with a stride of one, is the residual block. A residual block 

with a stride of two for shrinking and three layers in each block is another choice. A ReLU 1x1 convolutional 

layer [22] is the first layer. The depth wise convolution layer employs 3 × 3 depth-wise separable convolution, 

and the third layer is a linear 1 × 1 convolutional layer. NasNetMobile is a scalable CNN made up of twelve 

blocks and over five million parameters. Depending on the network’s capacity requirements, each block consists 

of a few basic processes repeated numerous times. The block is the smallest unit in NASNet [23][24]. 

NasNetLarge is a CNN with over eighty-eight million parameters trained on over a million pictures from the 

ImageNet database. Normal cell and reduction cell are two of the themes [25]. Normal cells return a feature map 

in the same dimension as convolutional cells. In reduction cells, convolutional cells return a feature map with 

dimensions lowered by a factor of two [26]. The NAS-Neural Network Search algorithm [27] identifies the best 

neural network architecture. The RNN controller of the NAS algorithm samples the blocks and assembles them 

to construct an end-to-end architecture. The list of pre-trained CNN architectures available in the Keras library, 

with the year of publication, and number of parameters are summarized in Table 1. 

Table 1. CNN architectures 

S. 

No 

Model Year Published Parameters 

1 LeNet-5 1998 60,850 

2 AlexNet 2012 62,378,344 

3 VGG16 2014 138,357,544 

4 VGG19 2014 143,667,240 

5 ResNet50 2015 25,636,712 

6 ResNet101 2015 44,707,176 
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7 ResNet152 2015 60,419,944 

8 Xception 2016 22,910,480 

9 ResNet50V2 2016 25,613,800 

10 ResNet101V2 2016 44,675,560 

11 ResNet152V2 2016 60,380,648 

12 InceptionV3 2016 23,851,784 

13 DenseNet121 2017 8,062,504 

14 DenseNet169 2017 14,307,880 

15 DenseNet201 2017 20,242,984 

16 InceptionResNetV2 2017 55,873,736 

17 MobileNet 2018 4,253,864 

18 MobileNetV2 2018 3,538,984 

19 NASNetMobile 2018 5,326,716 

20 NASNetLarge 2018 88,949,818 

3 Methodology 

The images in this dataset were taken with a variety of mobile devices. The photos were taken in front of a white 

background with natural or artificial lighting. The original dataset is over 3.5 GB in size, and each image has been 

reduced to 512 × 384 pixels in size. The data distribution is shown in Table 2, while Figure 1 shows examples 

from each class in this dataset. Data Augmentation artificially increases the size of the training dataset, allowing 

the model to learn and generalize better on future unseen data [28]. To eliminate any bias in the model, 

Upsampling was used. It makes sure that both classes had the same number of images before training. 

Table 2. Distribution of data in TrashNet 

S. No Class Name Number of Images 

1 Cardboard 403 

2 Paper 594 

3 Glass 501 

4 Plastic 482 

5 Metal 410 

6 Trash 137 

 
 Glass Cardboard Metal 
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 Paper Plastic Trash 

Fig. 1. Sample images from the TrashNet dataset 

Random rotation, brightness adjustment, horizontal & vertical flips, channel shift, horizontal & vertical shifts, 

and channel shift were among the image manipulation techniques used. While increasing the dataset size, these 

picture changes were used to accommodate the various orientations of material. Biodegradable and non-

biodegradable photos were further divided into two categories. Metal, glass, and plastic are non-biodegradable 

by nature, while paper and cardboard are. The final dataset contains 19500 photos, with 9750 belonging to class-

one (biodegradable wastes) and the remaining 9750 to class-two (non-biodegradable wastes). The dataset was 

split into three parts: 80% for training, 10% for validation, and 10% for testing. Figure 2 shows the augmented 

images of one sample from the glass class. 

 
Fig. 2. Augmented images of a sample from glass class 

Table 3. Model’s accuracy on train and validation set 

Model Validation 

Loss 

Training 

Loss 

Validation 

Accuracy 

Training 

Accuracy 

NASNetMobile 0.2023 0.0780 0.9236 0.9709 

NASNetLarge 0.6230 0.1746 0.9128 0.9628 

DenseNet201 0.2116 0.1351 0.9108 0.9467 

DenseNet121 0.2594 0.1535 0.8964 0.9375 

DenseNet169 0.2555 0.1714 0.8933 0.9287 

ResNet50V2 0.3048 0.1349 0.8856 0.9475 

ResNet101V2 0.2788 0.1424 0.8851 0.9437 

MobileNet 0.2829 0.1744 0.8836 0.9308 
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ResNet152V2 0.3115 0.1526 0.8826 0.9382 

Xception 0.2833 0.1310 0.8821 0.9497 

MobileNetV2 0.3243 0.1756 0.8682 0.9285 

InceptionResNetV2 0.3478 0.2311 0.8554 0.8998 

InceptionV3 0.3454 0.2723 0.8549 0.8815 

LeNet-5 0.4338 0.2961 0.8174 0.8712 

VGG19 0.4282 0.2983 0.8144 0.8675 

VGG16 0.4088 0.3055 0.8108 0.8628 

AlexNet 0.5730 0.4129 0.7354 0.8061 

ResNet50 0.6165 0.5931 0.6621 0.6905 

ResNet101 0.6607 0.6139 0.5923 0.6616 

ResNet152 0.6744 0.6195 0.5903 0.6613 

Figure 3 show the variation of accuracy and loss in the training and validation data for over twenty epochs of 

the TrashNet. At the end of twenty epochs, the model had a training accuracy of 0.985 and a validation accuracy 

of 0.94. The loss on the training data is 0.03, while the loss on the validation data is 0.22. This shows overfitting, 

which can be solved by adding more images to the data set or adding more features that retain the image’s original 

dimensions. 

 
Fig. 3. Accuracy and loss of NASNetMobile model over twenty epochs 

The twenty models were trained for up to five epochs, and the accuracies and losses are tabulated in Table 3. 

NASNetMobile was the best performing model with the highest validation accuracy and least validation loss. 

ResNet152 had the least accuracy among the twenty models. 
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Fig. 4. Accuracy of different CNN architectures on train and validation data 

Figure 4 shows the accuracy of various models on the training and validation data. Residual Networks had the 

least validation accuracy of around 0.6 while all other models achieved a validation accuracy of more than 0.7. 

4 Results 

The trained models were tested on the test data, and the predictions were compared with the true labels. The 

accuracy metrics for each model are tabulated in Table 4. The NASNetMobile was the best performing model. 

The confusion matrix, shown in Figure 5, is a summary of prediction results on a classification problem. The 

model was tested using different activation functions and the accuracy metrics are tabulated in Table 5. Among 

the four activation functions, the model using Exponential Linear Unit (ELU) activation function had the highest 

accuracy. Table 6 describes the accuracy metrics of the model when different optimizers were used. The Adam 

optimizer, outperformed RMSprop and SGD. Three different learning rates were used while training the model 

and the accuracy metrics are shown in Table 7. From Table 8, it can be found that the model had the highest 

accuracy when the batch size was thirty-two. 

 
Fig. 5. Confusion matrix with true vs predicted label for NASNetMobile 

– Test data accuracy = (961 + 934) / (961 + 14 + 41 + 934) = 0.97179 

– Precision = (961) / (961 + 41) = 0.959082 

– Recall = (961) / (961 + 14) = 0.985641 

– F1-score = (2 * Precision * Recall) / (Precision + Recall) = 0.97218 

Table 4. Model’s accuracy on test set 
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Model Test 

Accuracy 

Precision Recall F1-score 

NASNetMobile 0.97179 0.95908 0.98564 0.97218 

NASNetLarge 0.96154 0.94379 0.98154 0.96229 

DenseNet201 0.95333 0.94467 0.96308 0.95378 

DenseNet169 0.95333 0.94378 0.96410 0.95383 

Xception 0.93180 0.92440 0.94051 0.93238 

DenseNet121 0.93128 0.91675 0.94872 0.93246 

ResNet101V2 0.92923 0.90671 0.95692 0.93114 

MobileNet 0.92718 0.91859 0.93744 0.92792 

ResNet50V2 0.92462 0.88692 0.97333 0.92812 

ResNet152V2 0.91333 0.88454 0.95077 0.91646 

MobileNetV2 0.91282 0.89345 0.93744 0.91492 

InceptionV3 0.89641 0.89723 0.89539 0.89630 

InceptionResNetV2 0.89590 0.85874 0.94769 0.90102 

VGG16 0.87949 0.89278 0.86256 0.87741 

VGG19 0.87180 0.89189 0.84615 0.86842 

LeNet-5 0.82923 0.79833 0.88103 0.8628 

ResNet50 0.72256 0.72939 0.70769 0.8061 

AlexNet 0.70821 0.64732 0.91487 0.6905 

ResNet152 0.65231 0.65138 0.65538 0.6616 

ResNet101 0.63692 0.58824 0.91282 0.6613 

Table 5. Accuracy of different activation functions on validation, train, and test set 

Activation 

Function 

Validation 

Accuracy 

Training 

Accuracy 

Test Accuracy 

ELU 0.9650 0.9607 0.9500 

ReLU 0.9625 0.9564 0.9500 

LeakyReLU 0.9625 0.9521 0.9475 

SELU 0.9575 0.9435 0.9425 

Table 6. Accuracy of different optimizers on validation, train, and test set 

Optimizer Validation 

Accuracy 

Training 

Accuracy 

Test Accuracy 

Adam 0.9700 0.9585 0.9430 

RMSprop 0.9650 0.9435 0.9389 

SGD 0.9600 0.9557 0.9451 

Table 7. Accuracy of different learning rates on validation, train, and test set 
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Learning Rate Validation 

Accuracy 

Training 

Accuracy 

Test Accuracy 

0.001 0.9625 0. 9578 0. 9475 

0.0001 0.9450 0. 9650 0. 9375 

0.01 0.9400 0. 9528 0. 9175 

Table 8. Accuracy of different batch sizes on validation, train, and test set 

Batch Size Validation 

Accuracy 

Training 

Accuracy 

Test Accuracy 

32 0.9725 0.9635 0.9375 

64 0.9675 0.9635 0.9550 

128 0.9625 0.9621 0.9550 

5 Conclusion 

Today’s computer vision algorithms enable the classification of trash into several categories. A dataset of about 

39000 images was developed as the first contribution of this study. NASNetMobile had the highest test accuracy 

of 97.18%, with the lowest validation loss of 0.20, among all the models when the various hyperparameters such 

as optimizer and loss function were kept constant. Other models, such as NASNetLarge, DenseNet201, and 

DenseNet169 had accuracy levels over 95%. In image classification, hyperparameters must be adjusted depending 

on the dataset used to train a model. For large learning rates, there is a strong link between learning rate and batch 

size. Based on the findings, it can be stated that the learning rate has a greater influence on accuracy than the 

batch size. Waste classification is a complicated task with a lot of elements to consider. Unlike other image 

classification problems using simplified images or quantitative data, waste classification needs to consider the 

object’s surroundings. The model must also avoid the most common object recognition mistakes, such as 

misidentifying multiple independent objects as a single object or vice versa, finding the same thing in multiple 

classes, and not detecting hidden objects. However, the success rate in real systems can be lower because of the 

small amount of data and the white background of all the images. 
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