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 Energy dissipation in solids involves various mechanisms, leading to 

the conversion of mechanical energy into heat. Two primary dissipative 

processes, namely 'static hysteresis' and viscosity properties, contribute 

to this energy loss. Static hysteresis is characterized by frequency-

independent energy loss per cycle, attributed to the non-linear stress-

strain behavior of materials. On the other hand, viscosity properties 

cause losses related to velocity gradients induced by vibrations, and the 

forces producing these losses exhibit a viscous nature, with mechanical 

behavior dependent on the rate of strain. Linear viscoelasticity is the 

field that addresses this issue. 

When energy is applied to a viscoelastic body, a portion dissipates as 

heat due to the material's viscosity, while the remainder is stored as 

reversible energy known as potential energy. Understanding the total 

energy of deformation, energy storage, and dissipation is of interest 

when investigating viscoelastic materials. The total deformational 

energy can be expressed as the sum of stored energy and dissipated 

energy. This energy relationship applies generally and can be 

represented in terms of unit volume. 

Viscoelastic materials are defined based on this energy relationship, 

wherein the applied energy is either stored elastically or dissipated as 

heat. Equation (1) captures this relationship, which is applicable beyond 

linear behavior and mechanical models. Sufficient information on 

applied deformation and energy rate is necessary for energy analysis. 

In addition to potential energy, there is also residual energy, associated 

with inertial energy storage encountered in fast loading experiments or 

high-frequency wave propagation. Although linear viscoelasticity 

theory neglects the role of inertial energy storage, it may be of interest 

to calculate it. Deformation of these structures involves the exchange 

of residual energy and various internal elastic energies, achieved 
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INTRODUCTION  

Energy dissipation in solids can be occurred by several different mechanisms, and although ultimately these all 

result in the mechanical energy being transformed into heat, two main dissipative processes are involved. The 

first type is known as 'static hysteresis'; that means the energy loss per cycle is independent from frequency, where 

the main cause may be associated simply with the 'static' non-linear stress-strain behavior of the materials. Another 

type is known as 'viscosity' properties of the body, according to which many materials show losses that are related 

to the velocity gradients set up by the vibrations. The forces producing these losses may be considered to have a 

viscous nature and mention that the mechanical behavior will depend upon the rate of strain. This issue is the 

subject of the 'linear viscoelasticity' [1].  

When some energy is applied to a viscoelastic body, a part of the applied energy is dissipated as heat because of 

viscosity properties of matter, but the remaining is stored as reversible energy than is known as potential energy. 

It is frequently of interest to determine, for a viscoelasticity body at a given mode of displacement or deformation, 

the whole energy of deformation as well as the amount of energy stored or dissipated that can be investigated by 

studying the structure of viscose material [2,3,4].  

The total deformational energy can be stated as follows:  

(𝑡�) = 𝑊�𝑠�(𝑡�) + 𝑊�𝑑�(𝑡�)                                                                             (1)  

Where 𝑊�(𝑡�) is the energy stored and 𝑊�𝑑�(𝑡�) is the energy dissipated. Equation (1) can be rewritten as follows:  

𝑊�̇ (𝑡�) = 𝑊�̇(𝑡�) + 𝑊�̇𝑑�(𝑡�)                                                                                (2)  

Where all terms will refer to the unit volume of the body. Equation (2) may be looked upon as the definition of a 

viscoelastic material [4]. Based on this definition, a viscoelastic material is one in which the total applied energy 

is partly stored elastically and remaining dissipated as heat. Since applied energy to the body can only be stored 

or dissipated, Eq. (1) is quite generally true and also all terms are positive. What makes it a viscoelastic relation 

is the interpretation of the stored energy as purely potential energy. The precise form of Eq. (1) depends, of course, 

on the nature of the material on the one hand, and on the mode of the displacement or deformation on the other. 

It should be noted that equation (1) is not limited to investigating the linear behavior of viscous matters. The 

behavior studied here does not depend on the assumption that the response can be modeled by springs and 

dashpots as mechanical model. It may be simply supposed of energy storing and dissipating mechanisms without 

recognizing them with mechanical models, and modify the proof as needed as an energy studying. For energy 

studying, it is necessary to know enough information on the applied deformation and the rate of the applied energy 

[5,6,7,8].  

Reversible stored energy is known as elastically or potential energy. Energy may also be stored initially, called 

here as residual energy, which may be encountered in fast loading experiments such as response to impulsive 

excitation, or in wave propagation at high frequency. Although in the linear theory of viscoelasticity, inertial 

through the coupling of internal elastic variables and induced elastic 

stress, as determined by Hamilton's principle. 

This paper presents a novel perspective on energy components and their 

balance, defining and calculating residual energy and non-inertial 

energy. The approach is applied to different basic linear viscoelasticity 

models, and the results are discussed. The analysis of equation (1) and 

the study of body's residual energy, as well as energy dissipation and 

storage, are essential for a comprehensive understanding of viscoelastic 

behavior. 
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energy storage plays no role in investigating the behavior of the matter, one may wish to calculate it [4]. The 

deformation of these structures requires exchange of residual energy and various internal elastic energies. This 

energy exchange is realized through special coupling of the transport of the internal elastic variables and the 

induced elastic stress which can be determined by using of the Hamilton’s principle [9,10]. Some researchers 

have studied the structure and energy dissipation by using of other methods [11,12,13]. Therefore, general analysis 

of equation (1) and residual energy of body as well as energy dissipated or stored will be frequently of interest.  

In this paper, by presenting a novel glance to energy components and their balance, the residual energy is defined 

and calculated as well as non-inertial energy which is the sum of the all energies that do not depend on the inertia 

of the system. Also, the presented approach is expanded to different basic linear viscoelasticity models and the 

results are discussed.  

1. MATHEMATICAL MODELING  

The certain effects of viscoelastic material behavior manifest themselves in a time-dependent response to loading 

and accompanying energy dissipation. The response of these materials will depend on the amount and rate of 

applied energy to the body. In fact, it can be stated that the relaxation or creep occurs when a viscoelastic matter 

is exposed to quasi-static displacement or loads and their changes. These phenomena are treated typically in the 

time and in the frequency domain, respectively [14].  

By examining the activated energy components in the performed process, the non-inertial energy can be 

investigated, and thus, by applying the principle of energy conservation, the inertia-dependent energies of the 

body, hereafter called residual energy, are calculated. The presented approach can provide a practical idea for 

analyzing the relevant problems.  

It is assumed that the total energy of the system can be stated as follows:  

𝑈�𝑇� = 𝑈�𝑉� + 𝑈�𝑅�                                                                                                (3)  

Where 𝑈�𝑇� is total energy, 𝑈�𝑉� is non-inertial energy and 𝑈�𝑅� is residual energy.  

From the perspective of non-inertial energies, when an amount of energy is applied to the system, some of the 

energy components will be activated. Between these activated components, some of them change independently 

and changing of other components will be dependent on the independent components. In this paper the bellow 

equation is used for noninertial energies:  

𝑈�𝑉� = 𝑈�𝑉�𝑠� + 𝑈�𝑉�𝑑�                                                                                            (4)  

𝑈�𝑉�𝑠� = (𝑢�1+ 𝑢�2 + ⋯+ 𝑢�𝑚�)+ [𝑔�1+ ⋯+ 𝑔�𝑘�]                                                            (5)  

𝑈�𝑉�𝑑� = [ℎ1+ ⋯+ ℎ𝑛�]                                                                              (6)  

Where:  

𝑔�𝑗� = 𝑔�(𝑢�1,𝑢�2,… ,𝑢�𝑚�)                                                                                       (7) ℎ𝑝� = ℎ𝑝�(𝑢�̇1,…, 𝑢�̇𝑚�)                                                                                           

(8)  

Where 𝑈�𝑉�𝑠� is a part of non-inertial energy that is stored and 𝑈�𝑉�𝑑� is the remaining that is dissipated. Equation 

(4) has the main idea of equation (1) which describes the performed process based on energy components in 

viscoelastic bodies. In equation (5), the functions of 𝑔�𝑗� show the dependent components as a function of 

independent components while the functions of ℎ𝑝� show the effects of applying energy rate on the structure of 

non-inertial energy of body. In a viscoelastic body, functions of 𝑔�𝑗� are activated because of the poisson’s ratio of 

material while functions of ℎ𝑝� are activated because of the viscosity properties.  

The variation of equation (4):  

𝛿�𝑈�𝑉� = ∑𝑚�𝑖�=1𝛿�𝑢�𝑖� + ∑𝑘�𝑗�=1∑𝑚�𝑖�=1
𝜕�𝜕� 𝑔�𝑢�𝑗�𝑖� 𝛿�𝑢�𝑖� + ∑𝑝�𝑛�=1∑𝑚�𝑖�=1

𝜕� 𝜕�
ℎ
𝑢� ̇𝑝�𝑖� 𝛿�𝑢�̇ 𝑖�                                                    (9)  
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The eq. (9) means that an amount of energy variation 𝛿�𝑈�𝑇� is given to the body and the variation of energy 

components due to this process are considered, so as a result the following changes will be occur in the 

independent components:  

𝛿�𝑢�1 = 𝛼�1𝛿�𝑈�𝑇� ⋮  

𝛿�𝑢�𝑚� = 𝛼�𝑚�𝛿�𝑈�𝑇�                                                                                              (10)             

The coefficients αi as loading coefficients will be depended on how energy is applied to the body as well as 

materials properties of the body, therefore:  

𝛿�𝑢�̇ 𝑖� = 𝛼�̇𝑖�𝛿�𝑈�𝑇� + 𝛼�𝑖�𝛿�𝑈�̇𝑇�                                                                               (11) By assuming that:          

𝜕�𝑔� 

𝛼�𝑠� 𝑖�=1 𝑖� 𝑗�=1𝜕�𝑢�𝑖�                                                                                 

(12)  

𝛼�𝑑� = [∑𝑚�𝑖�=1𝛼�̇𝑖� (  𝑝�𝑛�=1𝜕�𝑢� ̇𝑖�                                                                                    (13)             

𝛼� = 𝛼�𝑠� + 𝛼�𝑑�                                                                                                (14)  

𝛽� =  𝑖�=1𝛼�( 𝑝�=1( 

𝜕�𝑢�̇𝑖�))                                                                             (15)            

The variation of non-inertial energy can be rewritten as follows:  

𝛿�𝑈�𝑉� = 𝛼�𝛿�𝑈�𝑇� + 𝛽�𝛿�𝑈� ̇𝑇�                                                                                  (16)   

And also:  

𝛿�𝑈�𝑉�𝑠� = 𝛼�𝑠�𝛿�𝑈�𝑇�                                                                                      (17)  

𝛿�𝑈�𝑉�𝑑� = 𝛼�𝑑�𝛿�𝑈�𝑇� + 𝛽�𝛿�𝑈�̇𝑇�                                                                             (18)            

By using equation (3), the variation of the residual energy in a performed process can be written as follows:  

𝛿�𝑈�𝑅� = 𝛿�𝑈�𝑇� − 𝛿�𝑈�𝑉�                                                                                   (19)            

By placing the equation (16) in (19):      

𝛿�𝑈�𝑅� = (1 − 𝛼�)𝑈�𝑇� − 𝛽�𝛿�𝑈�̇𝑇�                                                                           (20)            

Equation (20) gives the residual energy of the body as a function of the amount and rate of applied energy to the 

body as well as coefficients 𝛼� and 𝛽�.  

2. LINEAR VISCOELASTICITY  

In this part, using the presented approach, some basic linear viscoelasticity models are investigated and obtained 

results will be compared with the expected ones. At first, a viscoelastic body under uniform uniaxial stress, as 

shown in figure 1, is considered. This example can show the basis of presented approach clearly.  

→ 𝜎�1            ←  

      ← →  

      ←           →  

Figure 1: Viscoelastic body under uniform uniaxial stress  

Because of uniaxial stress, Poisson's ratio does not have an effect on the non-inertial energy in this problem, so 

there is no need to use functions 𝑔�𝑗�. If we consider the effects of viscosity as a dependent component and also 

use a linear model, then the following statement can be used to express non-inertial energy:  

𝑈�𝑉� = 𝑢�𝑒� + 𝑐�1𝑢�̇𝑒� + 𝑐�2                                                                                 (21)  

Where 𝑢�𝑒� is the elastic energy as independent component and ℎ𝑒� = 𝑐�1𝑢�̇ 𝑒� is used to consider the effect of linear 

viscosity of body as dependent component. Also 𝑐�1 and 𝑐�2 are constant, where 𝑐�1 depends on the material’s 

viscosity and elastic material properties and 𝑐�2 depends on the initial conditions.   
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By using of equations (14) and (15):  

𝛼� = 𝛼�𝑒� + 𝑐�1𝛼�̇𝑒�                                                                                      (22)  

𝛽� = 𝑐�1𝛼�𝑒�                                                                                          (23)  

Which 𝛼�𝑒� represents the proportion of energy that is converted to elastic energy. Therefore equation (16) can be 

rewritten as follows:  

𝛿�𝑈�𝑉� = (𝛼�𝑒� + 𝑐�1𝛼�̇𝑒�)𝑈�𝑇� + (𝑐�1𝛼�𝑒�)𝛿�𝑈�̇𝑇�                                                                   (24)  

By defining how energy is applied to body, the variation of non-inertial energy can be calculated. The dissipated 

and stored parts of the non-inertial energy are also as follows:  

𝛿�𝑈�𝑉�𝑠� = (𝛼�𝑒�)𝑈�𝑇�                                                                                    (25)  

𝛿�𝑈�𝑉�𝑑� = (𝑐�1𝛼�̇𝑒�)𝑈�𝑇� + (𝑐�1𝛼�𝑒�)𝛿�𝑈�̇𝑇�                                                                      (26)  

Equations (25) and (26) state that the stored part depends on the amount of applied energy only while the 

dissipated part depends on the amount as well as rate of the applied energy. This is in line with the definition of 

viscoelastic materials. Equation (26) also takes a clear description to the dissipated energy and its reasons. Figure 

2 shows linear viscoelastic kelvin model.  

  
Figure 2: Kelvin-Voight model  

For elements shown in figure 2 based on the parameters defined in equation (21):  
𝜕�𝑢�𝑒� = 𝐸�                                                                                           (27)  

𝜕�𝜀� 
𝜕�𝑢�𝑑� = ƞ                                             ̇                                               (28)  

𝜕�𝜀� 

That ue and ud are stored and dissipated energies respectively, therefore:  
𝜕�2𝑢�𝑒� = 𝐸� 𝜕�𝑢�𝑑�                                                                                      (29)  

𝜕�𝜀�𝜕�𝑡�ƞ 𝜕�𝜀� 

ƞ 

𝑢�𝑑� = 𝐸� 𝑢�̇𝑒� + (𝑡�)                                                                                   (30)  

Where (𝑡�) is a function of time related to initial condition. To determine 𝛼�𝑒� as loading coefficient for viscoelastic 

kelvin model, it can be written based on energy conservation principle and equations (21) and (30):  

𝛿�𝑈�𝑇� = 𝛿�𝑢�𝑒� + 𝛿�𝑢�𝑑�                                                                                   (31)  

Where:  

ƞ 

𝛿�𝑢�𝑑� = 𝑐�1𝛿�𝑢�̇𝑒� = 𝐸�  𝛿�𝑢�̇ 𝑒�                                                                               (32) ƞ ̇ ]                                                                         (33)  

𝛿�𝑢�𝑑� = (𝐸�)[𝛼�̇𝑒�𝛿�𝑈�𝑇� + 𝛼�𝑒�𝛿�𝑈�𝑇� Therefore:  

 ƞ ̇ ]                                                                (34)  

𝛿�𝑈�𝑇� = (𝛼�𝑒�)𝛿�𝑈�𝑇� + (𝐸�)[𝛼�̇𝑒�𝛿�𝑈�𝑇� + 𝛼�𝑒�𝛿�𝑈�𝑇�      

𝑈� ̇𝑇� = (𝛼�𝑒�)̇𝑇� + (ƞ
𝐸� )[𝛼�̇𝑒�𝑈�̇𝑇� + 𝛼�𝑒�𝑈�̈𝑇�]                                                                    (35)  

That yield:  
𝑈� ̇𝑇�+(ƞ)𝑈� ̈ 
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𝛼�̇𝑒� + [ ƞ𝐸� 𝐸� ̇𝑇� 𝑇�]𝑒� = (ƞ
𝐸�)                                                                                     (36)  

( )𝑈� 

Therefore, 𝛼�𝑒� can be calculated from equation (36) which strongly depends on how energy would be applied to 

the system.  

As another way, if dissipated energy is considered as independent component:  

𝑈�𝑉� = 𝑢�𝑑� + 𝑐�1𝑢�̇𝑑� + 𝑐�2                                                                                (37)  

Therefore:  

𝛼� = 𝛼�𝑑� + 𝑐�1𝛼�̇𝑑�                                                                                      (38)  

𝛽� = 𝑐�1𝛼�𝑑�                                                                                          (39)  

𝛿�𝑈�𝑉� = (𝛼�𝑑� + 𝑐�1𝛼�̇𝑑�)𝑈�𝑇� + (𝑐�1𝛼�𝑑�)𝛿�𝑈�̇𝑇�                                                                  (40) This results in:  

𝛿�𝑈�𝑉�𝑠� = (𝛼�𝑑�)𝑈�𝑇�                                                                                   (41)  

𝛿�𝑈�𝑉�𝑑� = (𝑐�1𝛼�̇𝑑�)𝑈�𝑇� + (𝑐�1𝛼�𝑑�)𝛿�𝑈�̇𝑇�                                                                     (42)  

Equation (37) expresses the energy structure of Maxwell viscoelastic model, as shown in figure 3. For this model:  

  
Figure 3: Viscoelastic Maxwell model  

𝜕� 𝜕�𝜀�𝑢�𝑂�𝑉�𝑑� = ƞ 𝑂̇�𝑉� = 𝐸� 𝑒� = 𝜕�𝜕� 𝑢�𝜀�𝑒�𝑒�                                                                            (43)  

By supposing that second derivative of 𝑂�𝑉� with respect to time is zero, this equation yields: 

ƞ 

𝑢�𝑒� = 2 𝐸� 𝑢�̇𝑑�                                                                                         (44)  

Therefore, for this model, the loading coefficient 𝛼�𝑑� can be obtained as bellows:  

𝛼�̇𝑑� + [𝑈�̇𝑇�+(2ƞ𝐸�)
̇ 
𝑈� ̈𝑇�] 𝛼�𝑑� = (2

ƞ
𝐸�)                                                                           (45)  

(2𝐸�)𝑈�𝑇� 

As seen the general form of non-inertial energy structure of Kelvin and Maxwell models are similar.  

This procedure could be generalized for an arbitrary kelvin elements connected in series as shown in figure 4. 

The noninertial energy structure is:  

  
Figure 4: Generalized kelvin elements  

𝑈�𝑉� = 𝑢�𝑒�1+ 𝑢�𝑒�2+ ⋯+ 𝑢�𝑒�𝑁� + 𝑐�𝑒�1𝑢�̇𝑒�1 + 𝑐�𝑒�2𝑢�̇𝑒�2 + ⋯+ 𝑐�𝑒�𝑁�𝑢� ̇𝑒�𝑁� + 𝑐�𝑜�𝑛�𝑠�𝑡�𝑎�𝑛�𝑡�                                      (46)  

This is also true for generalized Maxwell elements, as shown in figure 5:  

  
Figure 5: Generalized Maxwell element  

ƞ 
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𝑈�𝑉� = 𝑢�𝑑�1 + 𝑢�𝑑�2+ ⋯+ 𝑢�𝑑�𝑁� + 𝑐�𝑑�1𝑢�̇𝑑�1 + 𝑐�𝑑�2𝑢�̇𝑑�2 + ⋯+ 𝑐�𝑑�𝑁�𝑢�̇𝑑�𝑁� + 𝑐�𝑜�𝑛�𝑠�𝑡�𝑎�𝑛�𝑡�                                      (47)  

Indeed obtained non-inertial energy equations show that when an amount of energy is applied to the system, what 

would be the feasible changes of the system based on the way the energy is applied to it.  

3. CONCLUSIONS  

Based on the way considering independent and dependent energy components, an energy distribution to the 

system could be presented to consider the physical properties as well as feasible directions.  

The whole energy of the body is divided into two parts: residual energy and non-inertial energy. The non-inertial 

energy equation depends on the physical properties of the body and its variation is defined based on the amount 

and rate of applied energy to the system as well as the loading coefficients.  

By considering energy conservation principle, the non-inertial energy as well as residual energy could be 

calculated. The presented approach applied to linear viscoelastic models which resulted in obtaining a first order 

differential equation to calculate dissipated or storing energy based on the way that the whole energy is applied 

to the system, in other words energy transfer rate and acceleration. For Kelvin and Maxwell models, similar 

general form of non-inertial energy equation was obtained.   
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