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Abstract 

In this paper, Repeated Load Flow Analysis 

method has been used to determine the optimal 

placement of Distributed Generation (DG) 

units in power system. A test network - 73-bus 

Port Harcourt 33 kV Power distribution system 

has been simulated in Electrical Transient 

Analyzer program (ETAP 12.6) software using 

Newton Raphson (N-R) load flow method. The 

optimal placement of the DGs is selected at the 

candidate load buses where voltage profile rises 

to acceptable limit through load flow repeated 

simulation. The result obtained identified the 

following buses:  16, 31, 37, 53, 57, 58, 59, 67, 

and 69 and as optimal DG placement. The result 

obtained after DG placement reveals acceptable 

voltage levels at the problem buses and the 

entire network. 
 

 

 

INTRODUCTION   

The load growth which emanate from rapid industrialization and population growth has resulted in an 

escalation in the electrical power demand. This problem has led to overloading of power lines, poor voltage 

profile, high line losses, incessant load shedding and power outages. The placement of DG units in the 

distribution network will constitute a reliable option and the most economical solution to meet the 

increased electricity demand due to load growth. Different methods have been proposed for optimal 

placement of distributed generation in power distribution system while considering different objectives 

such as reduction of system losses, improvement in system voltage profile, system reliability and voltage 

stability etc.   

Load flow algorithm computes the voltage magnitudes and phase angles at each bus of the network under 

steady state operating conditions. These programs also compute real and reactive power in each of the line 
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and power losses for all equipment, including transformers and distribution lines; thus, overloaded 

transformers and distribution lines are identified and remedial measures can be implemented.   

LITERATURE REVIEW  

Distributed Generation was favoured in the last few years due to the liberalization process of the electricity 

infrastructure as well as the impulse to produce electricity independent of fossil fuels. The first installation 

of small power plants therefore started to take place during the 80s and 90s, mostly close to the customers, 

connected to the distribution side of the network because of their small rating. These installations therefore 

were denoted as embedded or distributed generation. Many studies have been performed to identify the 

optimal placement of distributed generation in power distribution system.  

Greatbanks (2003) has formulated a methodology for locating the most appropriate site and deciding the 

size of DG. Optimum sitting is done by sensitivity analysis of power flow equations. Optimum sizing is 

formed as a security constrained optimization problem and solved by genetic algorithm. The soft 

computing techniques for optimization are mainly based on GA. This GA method has been employed 

successfully to solve complex optimization problems.  

Caisheng et al. (2004) presented a paper on analytical method to determine the optimal location to place 

distributed generation in radial as well as networked systems to minimize the power loss of the system.  

Kashem et al. (2007) addressed the issue of optimizing DG planning in terms of DG size and location to 

reduce the amount of line losses in distribution networks. Their optimization methodology, which was 

based on the Sequential Quadratic Programming (SQP) algorithm, assessed the compatibility of different 

generation schemes upon the level of power loss reduction and DG cost.  

Amanifar and Hamedani in 2011 applied PSO technique with sensitivity analysis for solving the optimal 

DG placement sizing problem by minimizing the total system cost, reducing losses and THD, and 

improving the voltage profile. The advantage of this combined method is that the search space is reduced, 

which eventually increases the speed of the optimization process.   

According to Pathak et al. (2012), the classical method has the following disadvantages: weak in handling 

qualitative constraints, poor convergence, too slow if the number of variables are large and 

computationally expensive for the solution of a large system. In most cases, mathematical formulations 

have to be simplified to get the solutions because of the extremely limited capability to solve real-world 

large-scale power system problems.  

Vivek et al. (2012) presented an efficient and reliable Particle Swarm Optimization (PSO) algorithm for 

solving Reactive power optimization including voltage deviation in Power System. Voltage deviation is 

the capability of a power system to maintain up to standard voltages at all buses in the system under 

standard conditions and under being subjected to a disturbance. Reactive power optimization is a complex 

combinatorial programming problem that reduces power loses and improves voltage profiles in a power 

system. To overcome this shortcoming, a multi-objective particle swarm optimization is proposed and 

applied in reactive power optimization on IEEE-30 bus, Here the RPO problem has been formulated as a 

constrained multi-objective optimization problem by combining of two objective functions  

(real power loss and voltage profile improvement) linearly shows that the particle swarm optimization 

more effectively solves the reactive power optimization problem in power system.  
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Funso et al. (2013) implemented load flow, short circuit, transient stability, modal/ eigenvalues calculation 

and harmonics analysis on Nigerian 330KV electrical network with distributed generation penetration. 

The conventional sources and DG were modelled using a calculated programme called Power Factory 

written DigSILENT. This method is time consuming and rigorous.  

Julius et al. (2013) presents a GA- IPSO based approach which utilizes combined sensitivity factor analogy 

to optimally locate and size a multi-type DG in IEEE 57-bus test system with the aim of reducing power 

losses and improving the voltage profile. The multi- objective function can be improved by taking into 

consideration other power system parameters like stability issue.  

Basudev et al. (2013) presented a paper on the impact of distributed generation on reliability of distribution 

system. After penetration of DG, the passive distribution system becomes an active system. The reliability 

improvement is maximum if the DG is connected at a location from where it can meet the highest load 

demand.  

Ayodele et al. (2015) presented optimal location sizing and appropriate technology selection of distributed 

generators for minimizing power loss using Genetic algorithm. This work was demonstrated using IEEE 

14-bus network to test the applicability of the algorithm. The result reveals that the developed algorithm 

is able to successfully select the most suitable DG technology and optimally size and place the DGs to 

minimize power loss in the network. The result reveals that multiple placements can further reduce the 

power loss in the network.  

Nweke et al. (2016) applied an analytical method to determine optimal location and sizing of DGs in the 

Nigerian power network for active power loss minimization. The proposed method emphasized on real 

power loss only in their formulation. The authors have ignored the reactive power losses which is key in 

the operation of power systems. In modern practical power systems reactive power injection plays a critical 

role in voltage stability control, thus the reactive power losses need to be incorporated in optimizing DG 

allocation for voltage profile improvement. For further research, the authors suggested genetic algorithm 

(GA)to reduce computation requirements of the techniques.  

Poulami et al. (2016) presented the particle swarm optimization (PSO) algorithm for solving Load-Flow 

Computation problem for power loss minimization. The PSO is a relatively new and powerful intelligent 

evolution algorithm for solving optimization problems. It is a population- based approach. The proposed 

approach employs the PSO algorithm for the optimal setting of optimal power flow (OPF) based on loss 

minimization function. This paper also compares the loss for conventional Newton-Raphson method and 

PSO method on power flow. The approach of PSO has been examined and tested on standard IEEE 14, 

IEEE 30 bus test systems. The obtained results are compared with conventional using Newton-Raphson 

method to evaluate the performance.  

Mournika et al. (2017) highlighted that distributed generators (DGs) play a vital role in present power 

distribution networks. The integration of distributed generators in distribution systems require optimal 

placement and sizing of distributed generators to yield minimum power losses and improved voltage 

profile. Often single DG placement may not be sufficient for power distribution system and multiple DGs 

may be required to be integrated to power distribution network. Concerning this, optimal location of 

multiple DGs in power distribution systems is very important. This paper presents a Particle Swarm 

Optimization (PSO) based algorithm for optimal location of multiple DGs into the power distribution 

network for power loss minimization. The proposed algorithm has two major steps; first step is the finding 

of optimal location and active power injections of multiple DGs and later is the computation of optimal 
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reactive power injection of DGs. A bio-inspired particle swarm optimization algorithm is used in the first 

step to locate multiple DGs optimally and to obtain optimal active power injections of DGs.In the second 

step, reactive power injections of DGs are selected based on the reactive power requirement of the area 

fed by the DG. The proposed method is successfully tested on IEEE 13 bus system and its performance 

has been benchmarked with the Improved Analytical method.  

Zuhaila et al. (2017) identified the optimal location of DG heuristically using power system simulation 

program for design and analysis of distribution system (PSS/Adept). The simulation was conducted by 

observing the power losses of the test system by installing DG at each load buses. Bus with minimum 

power loss was chosen as the optimal location of DG. In order to study the impact of DG to the fault 

current, various locations and sizes of DG were also selected. The simulations were conducted on IEEE 

33-bus distribution test system and IEEE 69-bus distribution test system. The results showed that the 

impact of DG to the fault current is significant especially when fault occurs at busses near to DG location.  

Hasibuan et al. (2018) presented a paper on the impact of distributed generation on distribution system 

losses using genetic algorithm. The implementation of this method was made on IEEE 30 standard bus 

test system. Results shows decrease in power losses in the distribution system when DG optimal located.  

Mario et al. (2018) carried out a review of the application of methods in determining the optimal location 

of DG on the distribution system.A genetic algorithm is the most used nontraditional method for 

determination of the optimal location and size of DGs in distribution network. The optimal allocation can 

be determined by using the optimization method.   
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Distributed Generation Placement Methods in Power System  

 

  

Fig.2.1 Flow chart of Distributed Generation Placement Methods in Power System  

Three broad categories of methods are usually adopted and have been identified to be analytical methods 

(Wang, 2004), classical methods (Georgilakis, 2013) and artificial intelligence (Meta- heuristic) methods  

Analytical methods.   

Analytical methods represent the system by a mathematical model and compute its direct numerical 

solution. Such techniques are suitable for small and simplistic system where the numbers of state variable 

involved are small in number. However, for large and complex systems, analytical methods perform 

adversely in respect to computational efficiency (Prem et al., 2016 and Sambaiah, 2018 Classical  
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methods.   

Another class of techniques used for optimizing the placement of DGs in power system is the classical 

methods. The classical methods are performing better than analytical methods for finding a near-optimal 

solution with better accuracy but present some inconveniences due to the danger of convergence, the long 

execution time, algorithmic complexity, and the generation of a weak number of non-dominated solutions. 

This includes:  

Artificial Intelligence Methods (meta-heuristic) methods  

Artificial intelligence (AI) methods or meta-heuristic techniques are performing better in terms of 

accuracy and convergence for extensively large and complex networks.  Growing interest in the 

application of artificial intelligence (AI) techniques to power system engineering has introduced the 

potential of using this state-of-the-art technology.  AI techniques, unlike strict mathematical methods, have 

the apparent ability to adapt to nonlinearities and discontinuities commonly found in power systems. The 

major advantage of the AI methods is that they are relatively versatile for handling various qualitative 

constraints. AI methods can find multiple optimal solutions in a single simulation run. So, they are quite 

suitable in solving multi-objective optimization problems. In most cases, they can find the global optimum 

solution.   

METHODOLOGY  

The Port Harcourt 33kV distribution network diagram, line data and bus data for the impact analysis is 

drawn from (Esobinenwu et al., 2019). This is Modelled and simulated in Electrical Transient Analyzer 

Program (ETAP) 12.6 software using Newton Raphson load flow method.   

Mathematical Formulation of Newton–Raphson Load Flow Equations for Power System Network 

(Polar Co-Ordinate Approach)   

The Newton-Raphson method for load flow solution solves iteratively using the load flow equations 

(Gupta, 2017)  

 For any ith bus,    

Vi = Vi ej then V*i =Vi e- j     (1) 

Where 𝛿the phase is angle of the bus voltages and 𝜃𝑖𝑘 is an admittance angle.  

For kth bus, Vk = V kej k and Yik =Yik e- j ik 
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for i= 2, 3, 4, …, n because bus 1 is slack bus. Now, the linear 

equation in polar form becomes  

  

  𝛥𝑃   J1   J2 

 𝛥𝑄                        J3     J4     (10)  

               

  

Where J1, J2, J3 and J4 are the elements of Jacobian matrix and can be determined from power equations 

(8) and (9) as follows:  

The off–diagonal and diagonal elements of J1 respectively, are  

 

 

            𝛥𝛿   

𝛥𝑉 
  

     

=   
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The elements of Jacobian matrix are computed with the latest voltage estimate and computed power. The 

formulation in polar co-ordinates takes less computational efforts and also needs less memory space.  

NEWTON RAPHSON LOAD FLOW SIMULATION DIAGRAM IN ETAP ENVIRONMENT  

Figure 1 to 4 shows the simulated composite diagram of the 73 bus of the Port   

Harcourt 33kV power distribution system with the inclusion of distributed generation.  

  

 

Figure 1: Port Harcourt Zone 2 (PHZ2)  
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Figure 2: Port Harcourt Zone 4 (PHZ4)  
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Figure 3: ELELEWO  

  

  

Figure 4: RUMUOSI  
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RESULT Table 1. Bus voltage per unit value  

Bus ID  Nominal kV  
Calculated Voltage 

(KV)  
P.U Value  Condition  

    BUS 1      132  135.96  1.03  Improved  

BUS 2  132  132.131  1.00  Improved  

BUS 3  132  133.952  1.01  Improved  

BUS 4  132  134.538  1.02  Improved  

BUS 5  132  131.667  1.00  Improved  

BUS 6  33  33.83  1.03  Improved  

BUS 7  33  33.856  1.03  Improved  

 BUS 8  33  34.34  1.04  Improved  

BUS 9  33  32.829  0.99  Improved  

BUS 10  33  32.327  0.98  Improved  

 BUS 11  33  33.016  1.00  Improved  

 BUS 12  33  33.014  1.00  Improved  

 BUS 13  33  32.633  0.99  Improved  

BUS 14  33  33.292  1.01  Improved  

 BUS 15  33  32.469  0.98  Improved  

BUS 16  33  33  1.00  Improved  

BUS 17  33  32.93  1.00  Improved  

BUS 18  33  33.214  1.01  Improved  

BUS 19  33  33.171  1.01  Improved  

BUS 20  33  32.389  0.98  Improved  

BUS 21  33  32.784  0.99  Improved  

BUS 22  33  33.011  1.00  Improved  

BUS 23  33  33.723  1.02  Improved  

BUS 24  33  32.907  1.00  Improved  

BUS 25  33  31.911  0.97  Improved  
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BUS 26  33  32.506  0.99  Improved  

BUS 27  33  32.465  0.98  Improved  

BUS 28  33  32.691  0.99  Improved  

BUS 29  33  31.806  0.96  Improved  

BUS 30  33  32.358  0.98  Improved  

BUS 31  33  33  1.00  Improved  

BUS 32  33  32.333  0.98  Improved  

BUS 33  33  32.76  0.99  Improved  

BUS 34  33  32.198  0.98  Improved  

BUS 35  33  31.592  0.96  Improved  

BUS 36  33  32.085  0.97  Improved  

BUS 37  33  33  1.00  Improved  

BUS 38  33  32.976  1.00  Improved  

BUS 39  33  31.525  0.96  Improved  

BUS 40  33  32.243  0.98  Improved  

BUS 41  33  32.544  0.99  Improved  

BUS 42  33  32.404  0.98  Improved  

BUS 43  33  32.791  0.99  Improved  

BUS 44  33  32.611  0.99  Improved  

BUS 45  33  32.805  0.99  Improved  

BUS 46  33  32.87  1.00  Improved  

BUS 47  33  33.059  1.00  Improved  

BUS 48  33  32.178  0.98  Improved  

BUS 49  33  32.333  0.98  Improved  

BUS 50  33  32.314  0.98  Improved  

BUS 51  33  32.327  0.98  Improved  

BUS 52  33  32.335  0.98  Improved  
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BUS 53  33  33  1.00  Improved  

BUS 54  33  32.208  0.98  Improved  

BUS 55  33  32.314  0.98  Improved  

BUS 56  33  32.192  0.98  Improved  

BUS 57  33  33  1.00  Improved  

BUS 58  33  33  1.00  Improved  

BUS 59  33  33  1.00  Improved  

BUS 60  33  32.79  0.99  Improved  

BUS 61  33  32.686  0.99  Improved  

BUS 62  33  32.599  0.99  Improved  

BUS 63  33  31.952  0.97  Improved  

BUS 64  33  32.445  0.98  Improved  

BUS 65  33  31.916  0.97  Improved  

BUS 66  33  32.673  0.99  Improved  

BUS 67  33  33  1.00  Improved  

BUS 68  33  32.563  0.99  Improved  

BUS 69  33  33  1.00  Improved  

BUS 70  33  31.602  0.96  Improved  

BUS 71  33  31.464  0.95  Improved  

BUS 72  33  32.141  0.97  Improved  

BUS 73  33  32.078  0.97  Improved  

  

 

 

Table 2. Line losses  

ID  MW Flow  Mvar Flow  kW Losses  
kvar  

Losses  
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Line1  352.417  317.323  5367  13916  

Line2  129.409  92.627  1008  2374  

Line3  74.411  55.2  410  751  

Line4  43.182  36.535  80.963  57.604  

Line5  105.331  92.383  69.425  160  

Line6  119.318  94.309  81.81  193  

Line7  79.219  80.179  44.935  96.143  

Line8  63.901  39.892  13.949  20.634  

Line9  29.484  23.673  3.515  -6.739  

 

Line10  35.012  26.695  4.766  -3.458  

Line11  35.175  25.652  4.619  -3.982  

Line12  38.825  28.796  5.694  -1.161  

Line13  13.131  13.729  0.918  -13.012  

Line14  29.965  22.768  3.604  -5.966  

Line15  7.8  8.17  8.752  9.019  

Line16  23.952  14.874  54.452  62.845  

Line17  9.835  6.099  9.049  9.349  

Line18  11.086  6.946  173  183  

Line19  28.497  17.704  79.59  92.494  

Line20  17.102  10.613  28.043  31.753  

Line21  18.243  11.323  31.468  35.769  

Line22  15.787  9.897  227  254  

Line23  21.722  13.486  44.865  51.555  

Line24  14.985  9.298  22.728  25.56  

Line25  10.49  6.506  10.745  11.401  

Line26  9.493  5.887  8.823  9.142  
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Line27  13.56  8.413  17.742  19.629  

Line28  11.905  7.385  14.45  15.818  

Line29  15.6  9.68  23.956  26.972  

Line30  0.3  0.278  0.112  -12.78  

Line31  25.965  16.323  430  498  

Line32  8.826  5.491  54.329  54.588  

Line33  10.97  6.852  117  126  

Line34  17.401  11.015  446  508  

Line35  10.349  6.475  139  148  

Line36  0.934  5.117  34.202  15.976  

Line37  12.175  7.588  92.501  100  

Line38  16.819  10.626  393  446  

Line39  13.056  8.127  72.632  80.169  

Line40  9.923  6.192  100  105  

Line41  12.12  7.588  164  179  

Line42  11.121  6.92  62.694  66.997  

Line43  9.865  6.155  98.841  103  

Line44  6.458  4.01  34.327  29.302  

Line45  8.912  5.555  82.021  82.355  

Line46  7.461  4.635  34.766  32.261  

Line47  10.16  6.332  81.114  85.62  

Line48  11.569  7.192  48.118  52.107  

Line49  10.115  6.289  46.827  49.344  

Line50  10.988  6.831  47.355  50.794  

Line51  10.509  6.532  43.314  46.033  

Line52  7.7  11.522  136  147  

Line53  10.075  6.276  73.091  76.988  
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Line54  12.909  8.029  59.929  66.02  

Line55  11.699  7.292  89.62  97.288  

Line56  6.2  12.803  144  156  

Line57  5.2  3.968  19.58  14.496  

Line58  6.097  -7.046  103  98.771  

Line59  10.639  6.627  75.094  79.447  

Line60  7.808  4.859  58.086  55.632  

Line61  8.572  5.343  81.747  81.409  

Line62  4.878  3.023  2.407  1.624  

Line63  3.683  2.279  9.269  2.155  

Line64  11.01  6.896  159  171  

Line65  3.633  2.249  6.366  1.158  

Line66  6.8  8.581  54.854  56.069  

Line67  9.878  6.14  43.992  45.917  

Line68  12.1  13.656  91.358  102  

Line69  8.122  5.053  51.666  51.705  

Line70  8.997  5.613  88.357  91.395  

Line71  10.507  6.544  72.621  77.3  

Line72  8.291  5.164  70.113  69.842  

Line73  14.548  5.944  296  324  

Line74  106.255  52.401  3354  3946  

Line75  23.618  25.961  833  966  

Line77  29.368  18.451  344  400  

Line78  34.903  21.978  505  590  

Line79  52.399  33.136  1004  1177  

Line80  26.573  16.711  365  422  

Line81  12.21  6.97  288  310  
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Line82  39.345  25.14  1243  1452  

Line83  20.288  12.809  426  488  

Line84  14.271  8.894  98.012  109  

Line85  20.668  12.972  165  189  

Line86  8.43  -5.164  113  112  

  

Table 3: Overall Summary of RLF  

Study ID  WITH DG   

Study Case ID  RLF  

Data Revision  Base  

Configuration  Normal  

Loading Cat  Design  

Generation Cat  Design  

Diversity Factor  Normal Loading  

Buses  96  

Branches  95  

Generators  9  

Power Grids  1  

Loads  58  

Load-MW  736.237  

Load-Mvar  591.593  

Generation-MW  736.237  

Generation-Mvar  591.593  

Loss-MW  23.594  

Loss-Mvar  149.937  
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Discussion  

Repeated load flow method identified: BUS 16(Oyigbo), BUS31(Eleme), BUS37(New Airport), 

BUS53(Rivoc), BUS57(Onward Fishery), BUS58(Elekahia), BUS59(Shell Industrial), BUS67(U.O.E), 

and BUS69(Master Energy) for optimal DG placement. The result of simulation shows overall power loss 

as 23.594MW and 149.937MVar. These represent (37.6% MW and 37.5MVar) reduction and an 

improvement in the system  

Conclusion  

This method (RLF) will be beneficial to power system planners and distribution companies to enhance the 

quality of power supply and for sustainable electric power system in the country. Distributed generation 

should be encouraged for off- grid rural electrification to meet the power need of the state and which may 

result to the nations improvement in rural electrification. Load flow analysis should be a regular routine 

operation of the utility company to access the steady state performance of the distribution system. The 

information from load flow analysis will enable the DISCOs to improve the distribution network.  
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