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 Over the past decade, artificial light sources have significantly 

intensified nocturnal luminance, leading to a substantial reduction in 

the observable starscape to the naked eye. A report in the US journal 

Science underscores that if this trend persists, the count of discernible 

stars without aid will plummet to less than half of present figures within 

two decades. Studies further accentuate that light pollution's 

ramifications transcend the natural realm, extending to disruptive 

effects on flora and fauna, ecosystem equilibrium, and the delicate 

balance of human chronobiology and endocrine functions. This 

multifaceted impact necessitates stringent management and control 

measures for mitigating light pollution's pervasive influence. 

 
 

 

1. Introduction  

1.1 Background  

Artificial light sources have increased the brightness of the night sky so much over the past decade that the number 

of stars visible to the naked eye has dropped dramatically, according to a report in the US journal Science. If this 

continues in less than 20 years, the number of stars visible to the naked eye will be less than half what it is today. 

Some studies also point out that light pollution will not only affect the natural life of plants and animals, and 

destroy the balance of the ecosystem, but also disrupt the balance of human body clock and endocrine, resulting 

in physical and mental problems, so the management and control of light pollution is very important.  

1.2 Notations  

The key mathematical notations used in this paper are listed in Table 1.  
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Table 1: Notations used in this paper  

Symbol  Description  Unit  

  Illumination     

  The optimized illumination[2]    

  Zenith brightness    

  Effective illumination    

  The optimized effective illumination    

  Urbanization rate    

  Per capita electricity consumption    

  The optimized per capita electricity consumption[3]    

  Per capita GDP    

  Illumination time    

  The optimized illumination time    

  Fitted light pollution risk level    

  The optimized light pollution risk level    

  Actual light pollution risk level    

  Protected land location    

  Rural community    

  Suburban community    

  Urban community    
2. Model I: Light Pollution Risk Level Measurement Model  

Light pollution is determined by a variety of factors, such as illumination, illumination time, per capita electricity 

consumption, urbanization rate, etc., so the method of multivariate analysis should be adopted to solve it. Principal 

component analysis can eliminate the correlation between evaluation indicators, reduce the mathematical spatial 

dimension studied, and facilitate the subsequent evaluation of schemes and models. Therefore, this paper 

establishes a light pollution measurement model based on principal component analysis.  

2.1 Light Pollution Risk Level Standard  

This paper divides the risk of light pollution into four levels: no pollution, light pollution, moderate pollution and 

heavy pollution[1]. The specific scores are shown in Table 2.  

Table 2: Level standard  

Levels  Score Interval  

No Pollution  [ 0 , 20 )  

Light Pollution  [ 20 , 60 )  

Moderate Pollution  [ 60 , 90 )  

Heavy Pollution  [ 90 , 100 ]  

According to the above scoring criteria, several typical samples corresponding to the four regions around the 

world are selected, namely, environmentally protected areas correspond to no pollution, rural areas correspond to 

light pollution, suburban areas correspond to moderate pollution, and urban areas correspond to heavy pollution.  

                                                           
1 Data sources: NOAA https://www.noaa.gov/, CNKI https://kns.cnki.net/,    

NBS http://www.stats.gov.cn/,Light Pollution Map https://www.lightpollutionmap.info/  

https://www.noaa.gov/
https://kns.cnki.net/%EF%BC%8CNBS
https://kns.cnki.net/%EF%BC%8CNBS


International Journal of Renewable Energy and Environmental Sustainability Vol 8(2) 

  

pg. 3 

2.2 Principal Component Analysis Level Modeling  

In this paper, the average parameter values of 8 samples are calculated through statistical analysis based on 

relevant data, as shown in Table 31.  

 
The second to seventh columns of data in the table were independent variables, and ARL was the dependent 

variable. Principal component analysis was conducted on these eight groups of data, and the following results 

were obtained after data standardization and principal component extraction, 

IL=83.47%,ZB=94.27%,EI=99.37%,IT=99.75%,EC=99.94%,GDP=98.99%,UR=98.68%, ARL=99.78%.  

Table 4: Cumulative contribution rate  

  IL  ZB  EI  IT  EC  GDP  UR  ARL  

Rate  83.4677  94.2728  99.3696  99.7544  99.9381  98.9882  98.6785  99.7783  

It can be seen from the Table 4 that the cumulative contribution rate of EI has reached 99.37%, so we select the 

third principal component and express the extracted three principal components with the following formula 

according to the calculated coefficient[6].  

Z1=0.3987IL+0.3918ZB-0.2434EL+0.3968IT+0.4070EC+0.3930GDP+0.3883UR  

Z2=0.1210IL+0.1161ZB+0.9176EI-0.0530IT+0.1223EC+0.3272GDP-0.0713UR  

Z3=-0.3970IL-0.5005ZB+0.2097EI+0.4168IT+0.2245EC-0.1610GDP+0.5458UR  

So for the principal component Z1, all variables except EI play a role. For Z2 EI plays a major role. For principal 

component Z3, both IT and UR play major roles. Finally the fitting risk level can be calculated according to the 

calculated principal component and cumulative contribution rate  

  
2.3 Application of Model I and Analysis of results  

2.3.1 Apply  

 
Figure 1: Cluster analysis results  

In this paper, nine different regions were respectively applied to the light pollution risk model, in which NY 

represents New York, NYs sub represents suburban New York, BJ represents Beijing, SH represents Shanghai, 

SHs sub represents suburban Shanghai, GZ represents Guangzhou, CD represents Chengdu, SJY represents 
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Sanjiangyuan, SX represents Yamagata County. Through cluster analysis, the three principal component scores 

of each sample were used to divide the nine sites into three categories, as shown in Figure 1.  

As can be seen from the figure above, the third principal component of SHs sub and SX is higher than that of 

other regions except SJY, and the first and second principal components also account for a certain proportion, so 

they are classified into the first category. NY, NYs sub, BJ, SH, GZ and CD have high first and second principal 

components, while the third principal component is relatively low, so they are divided into the second category. 

The third principal component of SJY is relatively high, and the first and second principal components almost 

have no effect on SJY, so SJY is classified into the third category.  

Next, the actual parameters of 9 regions are substituted into the expression of FRL obtained by us, and the results 

are shown in Table 5.  

Compared with the FRL calculated from the above table and the existing ARL, it can be seen that the model 

established by us well reflects the actual light pollution risk level, and the conclusion reached at last is consistent 

with the conclusion reached by the statistical analysis of the data: Protected land location and rural community 

are rated as light polluted, and suburban and urban community are rated as moderately polluted. Their scores 

increase in turn, and there are few areas with no pollution or heavy pollution. However, due to the special 

geographical conditions of the protected land, we do not rule out the problem of incomplete collection of relevant 

parameters or partial distortion of parameters.  

 
2.3.2 Analysis of results  

The above results are mainly due to different development strategies in different regions. For New York, Shanghai, 

Beijing and other national central cities, economic development is the first priority, a large number of resources 

and talents gathered here, so the number of enterprises and families using light is huge; For suburban Shanghai 

and Japan's Yamagata prefecture, economic development is less of a priority, and businesses and homes will use 

less light; Finally, for nature reserves like Sanjiangyuan, which are developed to ensure that the environment is 

not damaged, the economy is relatively backward, so the light pollution index of such areas is very low.  

3. Model II: Intervention Strategy Optimization Model  

3.1 Intervention Strategy  

3.1.1 Improved Light Source  

By using shielding and directional lighting to direct the light from the existing light source to the desired place, 

or using voice controlled lights, light sensitive lights to make it glow for the desired period of time, etc. This 

strategy can reduce IL and EC to a certain extent, but these two factors do not play an important role in the 

principal component, so it may not achieve a good effect in the end[4]. In order to verify this point, this paper 

established the relationship between t and IL and the linear model of EC.  



International Journal of Renewable Energy and Environmental Sustainability Vol 8(2) 

  

pg. 5 

  
According to the above expression, the score pair optimized by strategy 1 can be obtained. The analysis shows 

that with the continuous optimization of light source, the regional light pollution index will continue to decline, 

but with the passage of time, the influence of improved light source on light pollution gradually reaches the 

threshold.  

3.1.2 Legislative Limit  

Laws need to be enacted at the national level to limit lighting hours. This paper puts forward the following 

concrete measures[5]:  

A. Urban communities should not be lit for more than 12 hours a day and effective illumination should not 

be less than 30%;  

B. Suburban communities lighting should not exceed eight hours a day, and effective illumination should not 

be less than 50%;  

C. Rural communities and protected lands are not restricted.  

This strategy can improve and reduce, but has no obvious effect .For this, we modeled:  

For urban communities,  

  
For suburban communities,  

  
One of the most effective strategies is government policies to reduce light pollution, which will guide enterprises 

to improve production methods and compete reasonably. In addition, it can affect education to let residents know 

the seriousness of light pollution.  

3.1.3 Intensify Publicity  

At present, the public's understanding of light pollution is relatively shallow, so it is necessary to increase the 

publicity of the harm of light pollution and call on people to use light energy rationally[7]. This strategy will affect 

both EI and IT factors, but IT will take a long time for the strategy to achieve effect. Therefore, this paper 

establishes models between EI and t, and between IT and t.  

Publicity and education can influence people's way of life imperceptibly, thus stimulating the broad consciousness 

of the masses. In addition, publicity and education should be implemented to make people really aware of the 

seriousness of light pollution.  

  
3.2 Model Application and Analysis  

After comparative analysis, this paper finally applied the two typical regions of New York and Beijing into the 

optimization model of intervention strategy. At the same time, in order to reach a more accurate conclusion, this 

paper defined an optimization rate[8]  .  
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3.2.1 Location I: New York  

After applying New York to the intervention model, the light pollution risk score of strategy 1 was 91.69, strategy 

2 was 86.78, and strategy 3 was 83.05[9]. Based on the above data, the optimal ratio of light pollution risk score 

for New York can be calculated:  

  

Due to reducing light pollution 

risk levels in New York.  

3.2.2 Location II: Beijing  

Then, after applying Beijing to the model, the light pollution risk score of strategy 1 was 69.48, strategy 2 was 

57.33, and strategy 3 was 62.36. Based on the above data, the optimal ratio of Beijing's light pollution risk score 

is calculated:  

  

Due to light pollution risk 

levels in Beijing.  

3.3 Result Description  

As can be seen from the above, New York initially belongs to the heavily polluted area with a score  

of 93.43. However, through the intervention strategy proposed by us, its light pollution risk score can be reduced 

to 83.05 points, thus restoring to the moderately polluted area. For Beijing, it was initially a moderately polluted 

area with a score of 70.48, but after intervention strategies, its light pollution risk score could be reduced to 57.33, 

making it revert to a mildly polluted area. Because for New York, the economy is highly developed and the income 

level of its residents is very high[10]. So reaching out to residents through advocacy and education can work well. 

For Beijing, the political center of China, government policy plays a key role in social development. By 

formulating relevant policies, the government can influence the behavior of enterprises and individuals to 

effectively deal with the problem of light pollution. Therefore, the optimal intervention strategies for different 

sites may be different, but strategies 2 and 3 optimize the light pollution risk score far better than strategy 1, and 

it can be inferred that areas with lower initial scores within a certain range are more likely to reduce the degree 

of light pollution.  

4. Conclusion  

4.1 Strengths  

Based on the analysis of the existing literature on the influence factors of light pollution, the model adopts the 

method of principal component analysis to eliminate the influence of correlation among evaluation indicators, 

and integrates the principal component analysis and clustering algorithm to get better results. Most of the data 

used in the model is basic data, which is easy to collect and easy to use. The model is highly distinguishable and 

can well separate the light pollution risk situation in different regions.  

4.2 Weakness  

However, due to the lack of statistical data and errors in some fields, the model established in this paper may be 

different from the ideal model. In addition, there are some subjective factors in light pollution that are difficult to 

quantify, such as the impact on sleep quality, so the model is not inaccurate in measuring the impact of light 

pollution on these factors.   

, we can know that intervention strategy III is the most effective for  

, we can know that intervention strategy II is the most effective for reducing  
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