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 This study addresses the challenge of efficient energy management 

in microgrids facing rising electricity costs and power shortages. The 

study tackles the limitations of traditional fossil fuels and the 

intermittency of renewables by developing an optimized unit 

commitment framework for a hybrid microgrid (Solar PV, PHESS, 

utility supply, diesel generator) at the University of Jos. 

Computational intelligence techniques (GA, PSO, SA, PSO-GA, 

PSO-SA) were implemented in Python, incorporating an electronic 

synchronizer for stability and aiming to minimize operational costs 

and emissions. The simulation results revealed that the hybrid PSO-

SA algorithm achieved the lowest cost (₦1,246,765.58) and CO₂ 

emissions (N10695.87), demonstrating the effectiveness of hybrid 

optimization and the benefits of Solar PV and PHESS in reducing 

reliance on conventional sources. This study highlights the potential 

of computational intelligence to enhance microgrid efficiency and 

suggests future research on algorithm fine-tuning and hybrid 

approaches for further performance improvements. 
 

 

1. Introduction 

Global energy challenges (Ritchie et al., 2022) drive the need for sustainable microgrids integrating renewables 

(Solar PV, PHESS) and conventional sources (Postero et al., 2024) to enhance energy access and reliability 

(Sovacool et al., 2022). Efficient operation requires advanced optimization for unit commitment (Arefin et al., 

2023) because traditional methods struggle with cost, stability, and emissions (sati et al., 2024). This study 

develops a secured unit commitment framework for microgrids with the aim of minimizing costs and emissions 

while ensuring stability, using the University of Jos as a relevant case study. The initial analysis emphasizes the 

necessity for efficient microgrid energy management due to power shortages and rising costs, compounded by the 

intermittency of renewable energy sources. 

1.2 Aims and objectives 

This study addresses the problem of optimizing unit commitment in hybrid microgrids to balance cost, emissions, 

and stability, finding traditional methods inadequate. It develops an optimized framework using computational 

intelligence (GA, PSO, SA, and hybrids) and an electronic synchronizer for stability. The simulations comparing 

the algorithms showed that the hybrid PSO-SA performing best in minimizing cost and emissions. 
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1.3 Literature review 

 Nagra et al. (2019) proposed a hybrid GSA-DMS-PSO algorithm that improved convergence and accuracy but 

had potentially higher computational costs. Boqtob et al. (2019) developed the H-PSO-SCAC hybrid PSO 

algorithm for unit commitment in microgrids to minimize cost; however, its focus on a specific scenario may limit 

its applicability. Khunkitti et al. (2019) demonstrated that their iDA-PSO hybrid algorithm effectively reduces 

unit commitment costs; however, their analysis lacked details on computational complexity and uncertainty 

impacts. Xiu et al. (2019) found that their enhanced PSO algorithm lowers costs and improves stability for unit 

commitment in power systems with renewables, but they did not provide details on computational time, 

scalability, or comparisons to other methods. Zhu et al. (2019) created a monthly unit commitment model for 

renewables and reliability using interval predictions and a multi-objective genetic algorithm. However, its use of 

deterministic optimization and a simplified reliability assessment limits its practical application. Syama et al. 

(2020) proposed a hybrid Crow Search Algorithm and Gray Wolf Optimization for Unit Commitment and 

Economic Emission Dispatch in hybrid power systems, but their study may have lacked detailed analysis of 

computational complexity, scalability, and robustness with fluctuating renewables. Anyaka et al. (2020) used PSO 

for a power plant's unit commitment but did not thoroughly evaluate PSO's performance in terms of solution 

quality, convergence, scalability, and comparisons, nor did they address uncertainty. Moretti et al. (2020) created 

a robust optimization model for day-ahead scheduling in multi-energy systems and microgrids, which improved 

flexibility when dealing with uncertainty. However, the model faces challenges due to the complexity of its 

decision rules and computational efficiency. Rendroyoko et al. (2020) introduced a hybrid method combining an 

improved priority list and genetic algorithms for unit commitment in isolated microgrids with intermittent 

renewables, demonstrating effective scheduling. However, their findings were limited to a single case study and 

could be strengthened by further robustness analysis. Mohammadi et al. (2021) created a data-driven unit 

commitment method using kernel density to handle uncertainty and reinforcement learning-based PSO for multi-

objective optimization. However, the computational complexity of large systems and the effect of kernel 

bandwidth selection require more investigation. Ranganathan et al. (2021) proposed SAFA for Unit Commitment, 

which demonstrated better performance in terms of cost and computation time. However, a thorough analysis of 

SAFA’s specific strengths and weaknesses was not provided. Bakirtzis et al. (2021) created a demand response 

management framework linked to short-term power system scheduling for high renewable energy use. However, 

it did not account for real-world complexities such as the unpredictable nature of renewable energy, how 

participants might act, communication systems, and market structure. Das et al. (2021) used multi-objective 

Particle Swarm Optimization to optimize microgrid scheduling with solar and wind power and found that 

hierarchical PSO performed best. However, they did not thoroughly analyze how robust the method was when 

renewable energy production varied or how well it would work with larger systems. Tian et al. (2021) designed 

and optimized a hybrid PV/battery/diesel system for a remote village using a combined Improved Sparrow Search 

Algorithm and Sequential Quadratic Programming. However, their study was specific to that situation and did 

not extensively compare their method to other algorithms. Sayed et al. (2021) introduced a hybrid MPSO-EO 

algorithm for Unit Commitment that performed better on benchmark tests. However, they did not explicitly 

discuss the computational complexity of the algorithm. Bolurian et al. (2022) created a 24-hour ahead scheduling 

model for renewable microgrids that included unit commitment and network constraints. However, they did not 

thoroughly analyze its performance across different situations or consider uncertainties. Ang et al. (2022) 

developed a multi-objective optimization method for designing hybrid renewable energy systems for coastal 

communities, showing that it was feasible but noted difficulties in achieving high renewable energy use and the 

need for more research. Hosseini-Firouz et al. (2022) created a unit commitment model that considers the 

uncertainty of wind power using conditional value-at-risk to reduce costs and maintain reliability. However, it 

relies on a deterministic method and does not include demand response or energy storage as ways to lessen the 

impact of uncertainty. Zuniga et al. (2022) developed a robust unit commitment model for systems with a lot of 

renewable energy sources and N-1-1 contingencies using a nested column-and-constraint generation technique. 

However, it may be computationally complex, require a lot of data, and may not be able to account for all possible 

system disruptions. Aharwar et al. (2023) provided a broad overview of the Unit Commitment problem, 
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emphasizing the integration of renewable energy sources, transmission limits, and uncertainties, and pointed out 

the necessity for more research on robust optimization. Their work is a general review rather than a detailed 

examination of specific methods. Cordera et al. (2023) presented a multistage stochastic dynamic programming 

(SDDP) method for unit commitment in systems with high renewable energy and storage, which addresses 

uncertainty and correlation. However, they tested the proposed method on a small system, and it might face 

computational difficulties with larger systems. Abuelrub et al. (2023) created a modified African Vultures 

Optimization Algorithm (AVOA) for unit commitment that includes wind power and demonstrated better 

performance. However, they did not consider other types of uncertainties and did not explore different models for 

wind power. Suhail et al. (2023) developed a hybrid optimization technique called HMFPSO for estimating 

transmission line parameters, and it demonstrated better performance. However, this study did not discuss any 

potential limitations or areas for improvement of HMFPSO. Zhang et al. (2023) developed an integrated energy 

system unit commitment (IES-UC) model that incorporates power-to-gas technology and uses conditional values 

at risk to handle the uncertainty of wind power. However, the model may have limited complexity and may require 

a large amount of data. Hasan et al. (2024) developed a cooperative game theory approach for optimizing rural 

multi-microgrid operation considering renewables, storage, load, and prices, but it may be complex and 

computationally intensive for large systems and sensitive to real-time price and renewable availability. Ji et al. 

(2024) created a two-layer optimization model for unit commitment in hybrid renewable energy systems with 

pumped storage. However, the model may not have been adequately tested on large-scale systems before being 

compared with other methods. Xiao et al. (2024) proposed robust optimization for large wind-solar storage, but 

the impact of computational complexity and uncertainty were not fully discussed. Mena et al. (2024) developed 

multi-objective unit commitment with high wind and battery storage (BESS benefits shown), but BESS capacity 

constraints and complexity with uncertainties are limitations. Feng et al. (2024) created a day-ahead/real-time 

dispatch framework for renewable thermal storage using a quantile policy; however, scalability and comparison 

with other real-time methods are lacking. Kamboj et al. (2024) introduced CZOA for unit commitment with wind 

and EVs, but computational complexity and scalability for large systems and detailed algorithm comparison were 

missing. Manoharan et al. (2023) developed a novel MIPSO variant for microgrids with renewables and PEVs, 

but detailed MIPSO limitations and comparative analysis are lacking. Singh et al. (2024) created a multi-objective 

unit commitment model considering wind ramping, but more comprehensive renewable and uncertainty 

considerations and system reliability/cost analysis are needed. Manoharan et al. (2024) introduced a novel MIPSO 

variant for microgrids with high renewable energy sources, EVs, and battery storage; however, detailed 

complexity and scalability analysis for large microgrids and comprehensive comparative analysis are lacking. 

Ramasamy et al. (2024) developed a hybrid BWO-THDCNN approach for unit commitment in smart grids; 

however, a more comprehensive evaluation across diverse scenarios and potential computational challenges 

exists. Xu et al. (2024) developed a multi-objective optimization model for hybrid energy storage using a novel 

CMOPSO-MSI algorithm. However, challenges in handling real-world complexity and maintaining 

computational efficiency are potential limitations. Pourahmadi and Kazempour (2024) proposed SVM classifiers 

for faster unit commitment solving; however, it is deterministic, potentially has scalability issues, relies on 

historical data, and uses SVM exclusively. Qin et al. (2024) developed a hybrid HSA-DELF for enhanced 

engineering optimization, but evaluation on larger complex real-world problems may be lacking. Al-Kubragyi 

and Ali (2025) introduced a hybrid MFO-PSO algorithm for unit commitment; however, it potentially lacks 

evaluation on larger, complex systems and deeper parameter sensitivity/robustness analysis. González-Niño et al. 

(2025) provided a bibliometric analysis of microgrid energy management, identifying research clusters and gaps, 

but it is a review without original research. Singh et al. (2025) proposed a hybrid demand-side management 

approach for microgrids (load shifting, curtailment, smart charging for PHEVs), but it is limited to a specific 

scenario and needs more scalability/robustness analysis. Paul et al. (2025) proposed a multi-objective QPSO 

framework for grid-connected microgrids; however, this framework potentially lacks computational 

complexity/scalability analysis for large microgrids and detailed comparative analysis.  

This study aims to fill gaps in the literature review by providing a comparative analysis of optimization techniques 

applied to a real-world microgrid case study, integrating an electronic synchronizer for stability, examining hybrid 
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methods, focusing on minimizing cost and emissions, and managing renewable intermittency. The proposed 

model contributes a practical and comparative analysis addressing the shortcomings of existing research regarding 

cost, emissions, and system stability in a real-world context. 

2.0 Theoretical analysis 

Abdou and Tkiouat (2018) and Yang and Wu (2022) highlighted the importance of unit commitment (UC) in 

matching power generation with demand fluctuations, considering operational costs and reserve capacity. Salman 

and Kusaf (2021) described the UC optimization problem in detail. Wood et al. (2013) investigated multi-

objective UC for cost minimization. Bhattacharya and Chattopadhyay (2010) and Mohammadi and Soleymani 

(2021) focused on the economic cost and emission reduction of hybrid power system load dispatch. Kundur 

(1994) and IEEE Std. 1547 (2018) analyzed the significance of a synchronizer in power system economics. 

2.1 Cost Model of Energy Sources 

 The following cost analysis details a hybrid power system comprising micro-pumped hydro energy storage, solar 

PVs, diesel generators, and a public utility supply. 

2.1.1 Micro-pumped hydro energy storage model 

Pumped hydro-energy storage systems (PHESS) are crucial for mitigating renewable energy intermittency, as 

highlighted by Javed et al. (2020), by storing excess energy for use during periods of low renewable output. 

Blakers et al. (2022) identified potential PHES sites in eastern Australia, but further feasibility studies are needed. 

2.1.1.2 Cost Model of Power Generation from a Pumped Storage Hydropower Plant 

A pumped hydro energy storage system (PHESS) plant stores energy by pumping water to a higher elevation 

during low demand and releasing it through turbines to generate electricity during peak demand. The cost of 

power generation per kWh can be modeled using a quadratic equation, incorporating the capital costs, operational 

costs, and efficiency losses. 

Quadratic Model Equation 

The total cost per kWh of power generation from a pumped storage plant can be expressed as shown in equation 

(1), 

                            C (P) = a P2 + b P + c                                                                                                                      ...(1) 

where, C(P) = Cost of power generation per kWh (N/kWh), P = Power output in kW, a = Quadratic coefficient 

(accounts for non-linear efficiency losses and operational inefficiencies), b = Linear coefficient (accounts for 

energy losses in pumping and generation cycles, and variable O&M costs), and c = Fixed cost per unit of energy 

(includes CAPEX amortization and fixed O&M costs). 

2.2 Solar PV Model 

The Center for Sustainable Systems (2023) reported that the Earth receives an average of 1.73 x 10⁵ terawatts 

(TW) of solar radiation, significantly exceeding the global electricity demand of 2.9 TW. Matching highly 

variable electricity demand with solar PV generation can be assisted by energy storage and demand forecasting. 

Furthermore, solar PVs located near the demand can alleviate the stress on the electricity distribution network, 

particularly during peak times. While commercial PV panels typically convert 17%–20% of incident solar energy 

into electricity, researchers have developed cells with efficiencies approaching 50%. 

2.2.1 Cost Model of Solar PV Power Plants 
The cost of power generation per kWh from a solar PV power plant can be expressed as a quadratic model, 

incorporating the capital costs, maintenance costs, and system performance. As shown in equation (2); 

                               C(P) = a𝑃2 + bP + c, (2) 

where, C(P) = Cost of power generation per kWh (N/kWh), P = Power output of the solar PV system (kW), a = 

Quadratic coefficient (accounts for nonlinear performance degradation, inverter efficiency losses, etc.), b = Linear 

coefficient (accounts for proportional costs such as maintenance and land lease), and c = Fixed cost per unit of 

energy (accounts for CAPEX amortization and other fixed costs) 

2.3 Diesel Generator Model 
According to Obaro et al. (2018), a diesel generator converts the kinetic energy of a diesel engine into AC 

electrical power. The output depends on factors such as specifications, load type, and rotor speed control. Diesel 
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generators are commonly used as backup power sources or for providing electricity in areas where there is no 

access to a reliable power grid, such as remote locations and during emergencies. 

2.3.1 Cost model of diesel generator 

According to the Department of Energy (2022), a quadratic model equation for the cost of power generated from 

a diesel generator plant can be derived by considering fuel costs, maintenance costs, and capital costs, which often 

exhibit nonlinear relationships with output power. The quadratic model for the Cost of Power C(P) is shown in 

equation (3); 

                    C(P) = 𝑎𝑃2  + bP   +  c                                                                                                                    ...(3) 

Where, C(P) = Cost of power generation per kWh (N/kWh), P = Power output of the generator (kW), a = Quadratic 

coefficient (captures fuel consumption inefficiencies at varying loads),b = Linear coefficient (accounts for 

proportional costs such as fuel and maintenance), and c = Fixed cost per unit of energy (accounts for CAPEX and 

other overhead costs). 

2.4 The Public supply model 

A public supply refers to the electrical power supplied by a utility company to households, businesses, and other 

consumers through a network of power lines and substations. In many countries, utility supply is provided by 

government-owned or regulated utility companies responsible for generating, transmitting, and distributing 

electricity to consumers.        According to Kersting and Li (2019), Glover et al. (2021), and Marković et al. 

(2023), due to the intricate nature of 11kV utility supply systems, a single mathematical equation cannot fully 

capture their complex behavior. The performance of such systems is influenced by various factors, including the 

generation capacity, transmission and distribution networks, load demand, and control strategies. 

2.4.1 Cost Model of public supply 

According to Lazard (2022), the cost of power generation per kWh from a utility plant can be expressed as a 

quadratic model, incorporating capital costs, fuel costs, maintenance, and operational efficiency as shown in 

equation (4); 

   C(P) = 𝑎𝑃2 + 𝑏𝑃 + 𝑐                                                                                                     ...(4) 

Where, C(P) = Cost of power generation per kWh ($/kWh), P = Power output of the plant (MW or kW), a = 

Quadratic coefficient (accounts for non-linear operational inefficiencies, wear-and-tear, and aging effects), b = 

Linear coefficient (accounts for fuel costs, variable O&M costs), and 

c = Fixed cost per unit of energy (includes CAPEX amortization and other fixed costs). 

2.5 Electronic Synchronizer  
An electronic synchronizer ensures seamless synchronization of multiple power sources (Diesel Generator, Utility 

Supply, Pumped Hydro Energy Storage System, and Solar PV) by aligning frequency (Hz), voltage (V), and phase 

angle (°) before connecting/disconnecting sources to the grid. This synchronization is crucial in automatic unit 

commitment (UC) to prevent power quality issues and system instability. 

2.5.1 Main Synchronization Conditions 
For proper synchronization, the electronic synchronizer must satisfy the following conditions at time t as shown 

in equations (5) to (6); 

  ∆𝑓𝑡 = 𝑓𝑟𝑒𝑓,𝑡 − 𝑓𝑠𝑜𝑢𝑟𝑐𝑒,𝑡 ≈ 0                                                                                                       ..(5)    

  ∆𝑉𝑡 = 𝑉𝑟𝑒𝑓,𝑡 − 𝑉𝑠𝑜𝑢𝑟𝑐𝑒,𝑡 ≈ 0(46)         

   𝜃𝑡 = 𝜃𝑟𝑒𝑓,𝑡 − 𝜃𝑠𝑜𝑢𝑟𝑐𝑒,𝑡 ≈ 0                                                                                                       ...(6) 

Where,  

𝑓𝑟𝑒𝑓,𝑡 = reference grid frequency (e.g 50 Hz or 60Hz) [IEEE std.1547-2018]. 

𝑓𝑠𝑜𝑢𝑟𝑐𝑒,𝑡= frequency of power source (DG, Utility, Phess, or PV) at time t. 

𝑉𝑟𝑒𝑓,𝑡= reference grid voltage (e, g., 230 V or 400V) [NERC, 2020] 

𝑉𝑠𝑜𝑢𝑟𝑐𝑒,𝑡= voltage of power source at time t 

𝜃𝑟𝑒𝑓,𝑡= phase angle of the reference grid voltage at time t. 

𝜃𝑠𝑜𝑢𝑟𝑐𝑒,𝑡= phase angle of the power source voltage at time t. 
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2.6 Pollution Emissions Equations for Power Systems 
For a power system consisting of a solar PV, Diesel Generator, Pumped Hydro Energy Storage System (PHESS), 

and Utility Supply, pollution emissions mainly arise from the Diesel Generator (DG) and Utility Supply (if from 

fossil fuel sources). 

According to Momoh, (2012) and Wood and Wollenberg, (2013), the total emissions of different pollutants; 

Carbon Dioxide (CO₂), Carbon Monoxide (CO), Sulfur Dioxide (SO₂), Nitrogen Oxides (NOₓ), and Hydrocarbons 

(HC), can be modeled as follows: 

a) General Emission Equation 

The emissions from a generator operating on diesel fuel can be modeled as shown in equation (7); 

  𝐸𝑝,𝑡 = 𝛼𝑝 + 𝛽𝑝𝑃𝑑𝑖𝑒𝑠𝑒𝑙,𝑡 + 𝛾𝑝𝑃𝑑𝑖𝑒𝑠𝑒𝑙,𝑡
2                                                                                    ...(7) 

where, 𝐸𝑝,𝑡is the emission of pollutant p at time t. 

𝛼𝑝 (kg/h) is the constant emission coefficient of pollutant p. 

𝛽𝑝 (kg/MWh) is the linear emission coefficient of pollutant p. 

𝛾𝑝 (kg/MWh²) is the quadratic emission coefficient of pollutant p. 

𝑃𝑑𝑖𝑒𝑠𝑒𝑙,𝑡 (MW) denotes the power output of the diesel generator at time t. 

The total emissions of each pollutant over the 24-hour period are shown in equation (8); 

𝐸𝑝
𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑝,𝑡

24

𝑡=1

                                                                                                                              (8) 

Here, p represents CO₂, CO, SO₂, NOₓ, or HC. 

v) Total System Emissions 
The total pollutant emission p over the 24-hour period is shown in equation (9); 

𝐸𝑃
𝑇𝑜𝑡𝑎𝑙 = ∑(𝛼𝑃 + 𝛽𝑃𝑃𝑑𝑖𝑒𝑠𝑒𝑙,𝑡 + 𝛾𝑃𝑃𝑑𝑖𝑒𝑠𝑒𝑙,𝑡

2 )

24

𝑡=1

                                                                                     (9) 

If the utility grid is partially powered by fossil fuels, then purchased electricity emissions should be added: 

𝐸𝑔𝑟𝑖𝑑,𝑡 + 𝜆𝑃𝑃𝑈𝑡𝑖𝑙𝑖𝑡𝑦,𝑡     

The equation with fossil fuels and added emissions is as shown in equation (10) 

𝐸𝑃
𝑇𝑜𝑡𝑎𝑙 = ∑(𝛼𝑃 + 𝛽𝑃𝑃𝑑𝑖𝑒𝑠𝑒𝑙,𝑡 + 𝛾𝑃𝑃𝑑𝑖𝑒𝑠𝑒𝑙,𝑡

2 +  𝐸𝑔𝑟𝑖𝑑,𝑡 + 𝜆𝑃𝑃𝑈𝑡𝑖𝑙𝑖𝑡𝑦,𝑡)

24

𝑡=1

                                        (10) 

3.0 Materials and Methods 

The Multi-Objective Optimization for Unit Commitment:         
The effective operation of a microgrid system requires robust optimization techniques to manage the variability 

of renewable energy sources and fluctuating load demands. This study focuses on optimizing the unit commitment 

of a hybrid microgrid comprising a solar photovoltaic (PV), Pumped Hydro Energy Storage System (PHESS), 

public supply, and diesel generator. The objective is to minimize operational costs and pollutant emissions while 

ensuring stable and reliable power delivery through an electronic synchronizer. To achieve this, computational 

intelligence techniques, including genetic algorithms (GA), Particle Swarm Optimization (PSO), a hybrid PSO-

GA approach, and a hybrid PSO-SA (Simulated Annealing) approach, are employed. These optimization 

techniques were implemented in Python by leveraging various mathematical libraries to develop and simulate a 

power dispatch model under different loads and renewable generation scenarios. The optimization framework 

incorporates system constraints such as generator capacity limits, load balance requirements, and synchronization 

conditions. The importance of Unit Commitment (UC) in aligning power generation with varying demand has 

been emphasized by researchers such as Abdou and Tkiouat (2018) and Ohanu et al. (2024). UC involves devising 

power plant operating strategies that address demand fluctuations while considering factors like operational costs 

and the need for reserve capacity. Building on this, Salman and Kusaf (2021) offer a detailed explanation of how 

the UC optimization problem is described. Wood et al. (2013) investigated multi-objective optimization of unit 
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commitment for cost minimization. Bhattacharya and Chattopadhyay (2011), Tiwari et al. (2025) investigated the 

economic cost and emission reduction in the load dispatch of hybrid power systems, whereas Kundur (1994) 

IEEE Std.1547 (2022) gave an analysis of the significance of a synchronizer in the economics of power systems. 

3.1 The multi-objective optimization (MOO) equation integrates: 

Cost minimization (fuel, utility, storage, and solar PV savings 

 Pollution emission minimization (CO2, CO, SO2, NOx and HC emissions)  

Electronic synchronizer equation (ensuring frequency, voltage and phase matching). 

The system comprises the following components: 

 Diesel Generator (DG) 

Utility Supply (US) 

Pumped Hydro energy Storage System (PHESS) 

Solar PV (SPV) plants over a 24-hour period. 

3.1.1 Multi-Objective Function: 

𝑤1𝐶𝑡𝑜𝑡𝑎𝑙 + 𝑤2𝐸𝑡𝑜𝑡𝑎𝑙 +  𝑤3𝑆𝑠𝑦𝑛𝑐                                                                                                          (11) 

Where: 

𝑤1, 𝑤2, 𝑤3 = weight for cost, emission and synchronization                                                        
    𝐶𝑡𝑜𝑡𝑎𝑙 = total operational costs 

     𝐸𝑡𝑜𝑡𝑎𝑙 = total emissions 

      𝑆𝑠𝑦𝑛𝑐  = synchronization penalty function 

i. Cost Function  

𝐶𝑡𝑜𝑡𝑎𝑙  =  ∑(𝐶𝐷𝐺,𝑡 + 𝐶𝑈𝑆,𝑡 + 𝐶𝑃𝐻𝐸𝑆𝑆,𝑡 − 𝐶𝑆𝑃𝑉,𝑡)

24

𝑖=1

                                                                             (12) 

Where: 

𝐶𝐷𝐺,𝑡  =  𝑎𝐷𝐺𝑃𝐷𝐺,𝑡
2 + 𝑏𝐷𝐺𝑃𝐷𝐺,𝑡 + 𝐶𝐷𝐺 +  𝐶𝐷𝐺

𝑠𝑡𝑎𝑟𝑡𝑈𝐷𝐺,𝑡  ( Diesel generator cost) 

𝐶𝑈𝑆,𝑡 =  𝜆𝑈𝑆,𝑡𝑃𝑈𝑆,𝑡  ( Utility supply cost)                                                                     

𝐶𝑃𝐻𝐸𝑆𝑆,𝑡 =  𝜆𝑈𝑆,𝑡𝑃𝑃𝐻𝐸𝑆𝑆,𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

+ 𝑃𝑃𝐻𝐸𝑆𝑆,𝑡
𝑂&𝑀  (PHESS charging and maintenance cost) 

𝐶𝑆𝑃𝑉,𝑡  = 𝐶𝑆𝑃𝑉,𝑡𝑃𝑆𝑃𝑉,𝑡  ( Solar PV savings)                                                                  
i. Emission Function 

∑ ∑ (𝐸𝐷𝐺,𝑡
𝑃 + 𝐸𝑈𝑆,𝑡

𝑃 − 𝐸𝑆𝑃𝑉,𝑡
𝑃 − 𝐸𝑃𝐻𝐸𝑆𝑆,𝑡

𝑃 )

𝑝𝜖(𝐶𝑂2𝐶𝑂,𝑆𝑂2,𝑁𝑂𝑥𝐻𝐶

24

𝑖=1

                                        (13) 

Where: 

𝐸𝐷𝐺,𝑡
𝑃 = 𝛼𝐷𝐺

𝑃 𝑃𝐷𝐺,𝑡
2 + 𝛽𝐷𝐺

𝑃 𝑃𝐷𝐺,𝑡 + 𝛾𝐷𝐺
𝑃   (Diesel generator emission)                               

𝐸𝑈𝑆,𝑡
𝑃 = 𝜆𝑈𝑆

𝑃 𝑃𝑈𝑆,𝑡 (Grid − based emissions)                                                                      

𝐸𝑆𝑃𝑉,𝑡
𝑃 =  𝜆𝑈𝑆

𝑃 𝑃𝑆𝑃𝑉,𝑡  (Avoided emissions due to solar PV)                                           

𝐸𝑃𝐻𝐸𝑆𝑆,𝑡
𝑃 = 𝜆𝑈𝑆

𝑃 𝑃𝑃𝐻𝐸𝑆𝑆,𝑡
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 

 ( Avoided emission due to PHESS)                                  

ii. Synchronization Function 

𝑆𝑠𝑦𝑛𝑐 = ∑(𝑘𝑓|Δ𝑓𝑡| + 𝑘𝑣|Δ𝑉𝑡| + 𝑘𝜃|∆𝜃𝑡|)

24

𝑖=1

                                                                   (14) 

Where: 

𝑘𝑓 , 𝑘𝑣, 𝑘𝜃 = Synchronization penalty coefficients                                                   

Δ𝑓𝑡 =  𝑓𝑟𝑒𝑓,𝑡 − 𝑓𝑠𝑜𝑢𝑟𝑐𝑒,𝑡 (Frequency deviation)                                                        

Δ𝑉𝑡 =  𝑉𝑟𝑒𝑓,𝑡 − 𝑉𝑠𝑜𝑢𝑟𝑐𝑒,𝑡 ( Voltage deviation)                                                           

∆𝜃𝑡 =  𝜃𝑟𝑒𝑓.𝑡 − 𝜃𝑠𝑜𝑢𝑟𝑐𝑒,𝑡 (Phase angle deviation)                                                 
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The synchronizer adjusts the power sources using a PID controller. 

∆𝑃𝑠𝑜𝑢𝑟𝑐𝑒,𝑡 =  𝐾𝑝 . ∆𝑓𝑡 + 𝐾𝑖 ∫ ∆𝑓𝑡𝑑𝑡 +
𝑡

0

𝐾𝑑

𝑑

𝑑𝑡
∆𝑓𝑡                                                                             (15) 

Where: 

𝐾𝑝, 𝐾𝑖, 𝐾𝑑 are PID gains                                                                                                                             
  Sources are committed when: 

|∆𝑓𝑡|  ≤     𝜖𝑓 ,     |∆𝑉𝑡|  ≤   𝜖𝑣,       |∆𝜃𝑡|  ≤   𝜖𝜃                                                                                      

Constraints 

i. Power balance 

𝑃𝐷𝐺,𝑡 + 𝑃𝑈𝑆,𝑡 + 𝑃𝑆𝑃𝑉,𝑡 +  𝑃𝑃𝐻𝐸𝑆𝑆,𝑡
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

=  𝑃𝑑𝑒𝑚𝑎𝑛𝑑.𝑡𝑃𝑃𝐻𝐸𝑆𝑆,𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

                                                               (16) 

ii. Generator limits 

𝑃𝐷𝐺
𝑚𝑖𝑛  ≤  𝑃𝐷𝐺,𝑡  ≤   𝑃𝐷𝐺

𝑚𝑎𝑥                                                                                                                         (17)   
iii. Utility limits 

𝑃𝑈𝑆
𝑚𝑖𝑛  ≤  𝑃𝑈𝑆,𝑡  ≤   𝑃𝑈𝑆

𝑚𝑎𝑥                                                                                                                        (18)     
iv. Storage limits     

0 ≤ 𝑃𝑃𝐻𝐸𝑆𝑆,𝑡
𝑐ℎ𝑎𝑟𝑔𝑒

 ≤  𝑃𝑃𝐻𝐸𝑆𝑆
𝑚𝑎𝑥                                                                                                                  (19) 

0 ≤  𝑃𝑃𝐻𝐸𝑆𝑆
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

≤  𝑃𝑃𝐻𝐸𝑆𝑆
𝑚𝑖𝑛                                                                                                                                (20) 

Lazard (2022) 

3.1.2 The study used the following materials: 

i. Software: Python Anaconda environment with libraries such as Pandas, Matplotlib, Pyplot, 

geneticalgorithm, pyswarm, scipy, linprog, NumPy, multiprocessing, and Scipy for mathematical computations 

and customized code for implementing the optimization algorithms. 

ii. A line diagram of the University of Jos microgrid system. 

iii. Demand Response and Meteorological data relevant to the case study. 

iv. RTO Unit Commitment Test System GAMS Program for reference and potential benchmarking. 

Data Collection and Preprocessing: 
i. Collection of 24-hour load demand, solar irradiance, and cost data for diesel, utility, and PHESS. 

ii. Preprocessing the collected data into a suitable format for the optimization algorithms. 

Unit Commitment Model Implementation: 
i. Development of the unit commitment model in Python using Anaconda's Spyder environment. 

ii. Incorporation of the defined cost functions and system constraints (power balance, generation limits, etc.) 

are incorporated into the model. 

Setting the Algorithm Parameters: 
PSO: Swarm size = 30, maximum number of iterations = 100, Inertia weight = 0.7, Cognitive parameter = 1.5, 

Social parameter = 1.5. GA: Population size = 50-100, Crossover probability = 0.8-0.9, Mutation probability = 

0.01-0.05, Tournament selection, Number of generations = 20-50. SA: Initial temperature = 1000, Cooling rate = 

0.95. 

4.0 Results and Discussion 

This section presents the simulation results and analysis of the 24-hour power dispatch optimization for a hybrid 

microgrid (solar PV, PHESS, diesel generators, utility supply). Conducted in Python (Anaconda Spyder) using 

PSO, SA, HPSO-SA, HPSO-GA, and GA, the study examined optimized schedules, cost distributions, and 

performance comparisons to demonstrate the effectiveness of the models in achieving cost-effective and 

sustainable energy management, as illustrated through tables. 
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4.1 Results of the HPSO-SA  
Table 1: Output of four sources of power generation for 24-hour period, best CO2 emission cost, and best synchronization 

penalty.  

 Hour P (Solar) P(phess) P (diesel) P (public) Cost 

24 -1 0.000000    340.330000   0.000000   0.000000   21781.120000 

1-2 0.000000    311.010001 0.000000 0.000000 19904.641363 

2-3 0.000000    314.525681 0.000000 17.995584 22800.378484 

3-4 0.000000    408.657703 0.000000 140.052278 42960.385718 

4-5 37.073244 492.118550 0.000000 126.215789 48423.414726 

5-6 563.228092 359.727863 0.000000 22.470659 53170.624757 

6-7 1000.000000 204.121614 0.000000 0.000000 61065.397303 

7-8 452.081256 493.310651 0.000000 334.957209 93485.762966 

8-9 768.144454 199.605769 12.700865 157.779104 72809.176757 

9-10 801.417899 146.583641 1.197427 92.021676 59132.141416 

10-11 476.934769 413.105231 0.000000 0.000000 49331.604155 

11-12 0.000000 780.820000 0.000000 0.000000 49972.480000 

12-13 336.575172 428.525093 0.000000 0.000000 43581.479161 

13-14 0.000000 340.016679 0.273751 532.190389 89359.483134 

14-15 672.038618 218.752311 0.000000 0.000000 46648.930678 

15-16 0.000000 635.638847 0.000000 298.399927 77757.651376 

16-17 0.000000 663.539557 0.000000 254.029652 72999.298717 

17-18 0.000000 649.322383 0.000000 260.157081 73754.945697 

18-19 0.000000 730.200434 0.000000 208.988398 72230.267505 

19-20 0.000000 848.310000 0.000000 0.000000 54291.840000 

20-21 0.000000 79.844467 4.263959 545.770111 71496.713645 

21-22 0.000000 542.947637 0.000000 20.239272 37950.452333 

22-23 0.000000 413.250000 0.000000 0.000000 26448.000000 

23-24 0.000000 167.956528 0.005100 173.385541 31653.670879 

 
Table 2. The cost analysis for the hybrid energy system includes contributions from solar, PHESS, diesel, and public power 

supply sources. Below is the summary of cost components, emission, and synchronization performance. 

Power Source Cost (N) 

Total Solar Cost 352,335.60 

Total PHESS Cost 63,6244.35 

Total diesel fuel cost 25,453.68 

Total Public Power Supply Cost 130,825.44 

Overall Total Cost 1,273,941.55 

  

Best Emission Cost 10,695.87 

Synchronization Penalty 0 

Analysis of Power Dispatch and Cost  

Distribution 

This dataset outlines the hourly power dispatch for solar PVs, PHESS (Pumped Hydro Energy Storage System), diesel 

generators, and Utility Supply, along with the corresponding costs. 

Power Source use Trends 

Solar PV Generation 

i. Solar power is used from 04 to 14hours, aligning with daylight hours. 

ii. The maximum solar generation occurs at hour 9 (1000 MW), resulting in peak solar irradiance. 

iii. Solar generation is not used before hour 4 and after hour 14, implying a lack of solar storage. 

PHESS (Pumped Hydro Energy Storage System) 

i. PHESS is active throughout all hours, indicating its role in energy balancing. 
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ii. Peak PHESS usage occurs at hour 16 (917.83 MW), indicating reliance during evening transitions. 

iii. The lowest PHESS usage occurred at hour 6 (4.17 MW), possibly because of the charging period. 

Diesel Generator 

i. Diesel is used sparingly in hours 1, 10, 17, 20, and 22. 

ii. The maximum diesel use occurs at hour 17 (50.75 MW), indicating the need for backup generation. 

iii. The overall diesel cost is much lower than in previous datasets, indicating reduced reliance. 

Public Supply 

i. Public utility supply is mostly used in evening and early morning hours, particularly at 1, 3, 4, 6, 10, 15, 17, 18, 19, 

20, 21, and 22. 

ii. Peak public supply usage occurs at hour 19 (401.18 MW), possibly due to demand spikes. 

iii. No utility supply is used at hours 7, 8, 9, 11, 12, 13, 14, 16, and 23, thereby reducing external dependency. 

4.2 Results of the HPSO-GA  
Table 2: Output of four sources of power generation for 24-hour period, best CO2 emission cost, and best synchronization 

penalty.  

Hour P (Solar) P(phess) P (diesel) P (public) Cost 

24 -1 0.000000    202.438384 0.000000   137.795545 29587.593258 

1-2 0.000000    0.000000 311.010000 0.000000 62202.000000 

2-3 0.000000    202.292633 0.000000 130.084747  28924.278095 

3-4 0.000000    455.523268 0.000000 98.380735 46153.179846 

4-5 0.000000 341.942705 0.000000 313.412016 59549.053551 

5-6 122.474331 812.453906 6.695782 0.000000 62600.955207 

6-7 274.743603 136.772348 0.000000 792.540034 117109.942269 

7-8 320.663957 558.126273 5.291536 386.390234 108395.087055 

8-9 647.107418 492.812627 0.000000 0.000000 62601.208836 

9-10 657.739901 201.195908 0.000000 183.651915 67854.007795 

10-11 789.575388 24.631107 0.000000 75.001106 49308.541154 

11-12 780.281205 0.424063 0.053494 0.000000 37552.573988 

12-13 26.981030 494.626377 0.000000 239.163663 65979.746713 

13-14 479.283954 384.696507 0.000000 11.710157 55922,043363 

14-15 890.400000 0.000000 0.000000 0.000000 42739.200001 

15-16 0.000000 932.770000 0.000000 0.000000 59697.280000 

16-17 0.000000 917.520000 0.000000 0.000000 58721.280000 

17-18 0.000000 745.723821 0.000000 163.198849 67732.856186 

18-19 0.000000 751.311076 0.000000 189.433724 72790.755642 

19-20 0.000000 494.018892 0.000000 346.402585 81074.042208 

20-21 0.000000 212.978630 0.000000 417.688067 64499.896985 

21-22 0.000000 544.632932 0.000000 0.000000 54183.575304 

22-23 0.000000 198.222996 0.000000 218.171028 42010.819091 

23-24 0.000000 341.250000 0.000000 0.000000 21840.000000 

Power Source Cost (N) 

Total Solar Cost 258591.09 

Total PHESS Cost 648648.65 

Total diesel fuel cost 54884.38 

Total Public Power Supply Cost 322251.18 

Overall Total Cost 1324995.84 

Best Emission Cost 13,096.83 

Synchronization Penalty 0 

Analysis of Power Dispatch and Cost Distribution 

The provided dataset represents the hourly power dispatch from different energy sources; Solar PV, Pumped 

Hydro Energy Storage System (PHESS), Diesel Generator, and Utility Supply; along with their associated costs 

over a 24-hour period. Below is a structured analysis: 
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Power Source use Trends 

Solar PV Generation 

i. Solar power is used only from hours 4 to 14 to match daylight availability. 

ii. The peak solar generation occurs at hour 6 (1000 MW), which aligns with the peak solar output. 

iii. Solar energy is not used at night (hours 0-3 and 15-23), indicating reliance on other sources during these hours. 

PHESS (Pumped Hydro Energy Storage System) 

i. PHESS is used nearly every hour, indicating its role in energy balancing. 

ii. Peak PHESS usage occurs at hour 19 (848.31 MW), suggesting evening load compensation. 

iii. The lowest PHESS usage occurs at hour 11 (1.1 MW), likely due to sufficient solar generation at that time. 

Diesel Generator 

i. Diesel is used sparingly at hours 8, 10, 11, 12, 15, and 21. 

ii. The peak diesel generation occurred at hour 8 (88.6 MW), possibly due to a high early morning load demand. 

iii. Overall, diesel use remains low, helping to reduce costs and emissions. 

Public Supply 

i. Public utility supply is active throughout most of the day, with the highest demand observed at 18 hours (583.36 

MW). 

ii. Utility reliance was lowest at hours 5, 19, and 20, when no public supply was available. 

iii. Peak usage at hour 18 suggests increased evening electricity demand. 

4.3 PSO Results  
Table 3: Output of four sources of power generation for 24-hour period, best CO2 emission cost, and best synchronization 

penalty.  
Hour P (Solar) P(phess) P (diesel) P (public) Cost 

24 -1 0.000000    336.524773 0.267714 3.481700 22064.745573 

1-2 0.000000    0.000000 311.010000 0.000000 62202.000000 

2-3 0.000000    26.031695 0.038843 305.939759 38386.865362 

3-4 0.000000    254.837516 0.000000 293.869543 51576.887205 

4-5 182.404315 150.838381 0.000000 322.072554 57151.64028 

5-6 479.001862 466.008779 0.000000 0.000000 52817.292417 

6-7 183.122151 641.109011 0.042575 379.846269 95410.912791 

7-8 988.17318 292.123371 0.035832 0.000000 66138.321580 

8-9 214.574862 925.435110 0.000000 0.000000 69521.709149 

9-10 671.226407 369.993593 0.000000 0.000000 55898.457652 

10-11 282.799808 77.536012 0.000000 529.843497 82257.232754 

11-12 567.730131 213.089687 0.000000 0.000000 40888.968070 

12-13 382.834101 278.722876 0.000000 103.541932 48640.423292 

13-14 365.670385 360.30028 0.000000 142.353414 57781.536962 

14-15 529.455478 354.837967 5.995405 0.000000 49433.723360 

15-16 0.000000 497.483882 435.309254 0.000000 118923.723360 

16-17 0.000000 917.520000 0.000000 0.000000 58721.280000 

17-18 0.000000 908.465429 0.034567 0.000000 58148.704702 

18-19 0.000000 496.806795 0.000000 441.313579 85402.890722 

19-20 0.000000 794.036132 0.000000 53.979245 57590.44690 

20-21 0.000000 493.725024 0.000000 136.199499 47946.864954 

21-22 0.000000 42.938619 0.02228 520.959001 65307.748652 

22-23 0.000000 413.250000 0.000000 0.000000 26448.000000 

23-24 0.000000 341.250000 0.000000 0.000000 21840.000000 

Power Source Cost (N) 

Total Solar Cost 237290.172 

Total PHESS Cost 529534.541 

Total diesel fuel cost 48298.479 

Total Public Power Supply Cost 603404.257 

Overall Total Cost 1418786.738 

  

Best Emission Cost 14442.32 

Synchronization Penalty 0 
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Analysis of Power Dispatch and Cost Distribution 

This dataset presents the hourly power dispatch for solar PVs, PHESS (Pumped Hydro Energy Storage System), diesel 

generators, and Utility Supply, alongside the corresponding costs. Below is a structured analysis: 

 Power Source use Trends 

Solar PV Generation 

i. Solar power is only active between hours 5 and 14, showing a clear dependency on solar irradiance. 

ii. The peak solar generation occurs at hour 7 (988.17 MW), indicating high solar availability in the morning. 

iii. Some solar contributions are present in the afternoon, but the power output fluctuates. 

PHESS (Pumped Hydro Energy Storage System) 
i. PHESS plays a significant role and is used throughout the day. 

ii. High PHESS discharge was evident in hours 6 (641.11 MW), 8 (925.35 MW), 16 (917.45 MW), and 17 (908.47 

MW). 

iii. This suggests that PHESS is essential for nighttime and cloudy-hour power supply. 

Diesel Generator 
i. Diesel usage remains minimal at specific times (hours 1, 2, 6, 14, and 15). 

ii. Peak diesel usage occurs at hour 15 (435.31 MW), suggesting a need for emergency backup. 

iii. The low diesel use confirms a preference for renewable and stored energy sources. 

Public Supply 
i. Utility power is used mainly in the early morning (hours 0-4) and evening (hours 18-21). 

ii. Utility usage is highest at hour 10 (529.84 MW), correlating with an increase in cost. 

iii. Significant grid dependency remains (603,404 Naira cost), indicating potential areas for optimization. 

4.4 Results of GA  

Table 5: Output of four sources of power generation for 24-hour period, best CO2 emission cost, and best synchronization 

penalty.  

Hour P (Solar) P(phess) P (diesel) P (public) Cost 

24 -1 0.000000    86.176624     0.000000   207.783741    76818.987982 

1-2 0.000000    290.158474 0.000000 160.589744 177579.129195 

2-3 0.000000    272.185389 0.000000 98.922829 68388.822025 

3-4 0.000000    185.857584 382.585762 0.000000 108145.384197 

4-5 110.152787 368.049186 18.467940 119.648433 85985.535387 

5-6 302.401758 425.891685 235.286129 0.000000 107399.149871 

6-7 111.712551 536.935450 268.849443 185.153506 217183.430712 

7-8 724.937428 161.003157 0.000000 417.439200 118243.687366 

8-9 203.649085 300.234019 204.832503 419.057442 132390.478474 

9-10 182.276935 626.730184 214.236735 77.821710 160891.540040 

10-11 342.817187 287.035362 237.646191 99.224868 170945.318651 

11-12 281.567915 190.428731 231.660271 14.627850 136325.327600 

12-13 428.147133 0.000000 179.196247 124.893654 104240.516577 

13-14 77.790772 265.700996 38.668482 413.647280 151102.660523 

14-15 498.598431 238.282352 13.793279 123.019381 73418.333415 

15-16 0.000000 721.023669 0.000000 179.013549 100359.921882 

16-17 0.000000 91.391632 175.930955 574.225033 185914.639592 

17-18 0.000000 520.260545 289.214114 92.884153 108426.783788 

18-19 0.000000 730.0203205 140.878195 70.4884153 85972.940760 

19-20 0.000000 328.530205 489.137465 44.015575 137508.539900 

20-21 0.000000 351.496959 49.901161 269.680866 105996.727168 

21-22 0.000000 59.079135 71.441899 387.993984 110073.704574 

22-23 0.000000 335.637487 0.000000 50.712595 54466.229268 

23-24 0.000000 188.042265 49.557335 86.296071 49656.029210 
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Power Source Cost (N) 

Total Solar Cost 156674.495 

Total PHESS Cost 483849.692 

Total diesel fuel cost 658254.821 

Total Public Power Supply Cost 506056.832 

Overall Total Cost 2827433.818 

Best Emission Cost 15184.37 

Synchronization Penalty 0 

Analysis of Power Dispatch and Cost Distribution 

This dataset presents the hourly power dispatch for solar PVs, PHESS (Pumped Hydro Energy Storage System), 

diesel generators, and Public Utility Supply, alongside their corresponding costs. 

Power Source use Trends 

Solar PV Generation 

i. Solar power is only used between hours 5 and 15. This aligns with solar availability during daylight hours. 

ii. Peak solar generation occurs at hour 9 (575.00 MW), showing a midday peak in solar irradiance. 

iii. Solar generation declined after hour 15, with no contribution at night. 

PHESS (Pumped Hydro Energy Storage System) 

i. PHESS is used throughout the day, indicating that it plays a significant role in balancing the load. 

ii. High PHESS discharge occurred at hours 7 (511.64 MW), 8 (679.75 MW), 17 (794.46 MW), and 18 

(769.09 MW). 

iii. Lower PHESS contribution is seen at hours 9 (63.69 MW) and 12 (0 MW), possibly due to charging. 

Diesel Generator 

i. Diesel usage is sporadic but present at critical hours (hours 4, 6, 7, 8, 9, 12, 16, 17, 18, 19, 20, 21, and 22). 

ii. Peak diesel usage occurs at hour 16 (140.83 MW), suggesting the need for additional backup generation at 

that time. 

iii. The overall diesel consumption is higher than in previous datasets, which increases operational costs and 

emissions. 

Public Utility Supply 

i. Public utility supply is heavily used during morning and evening hours (especially hours 2, 3, 4, 8, 9, 10, 

12, 13, 14, 19, 20, and 21). 

ii. Peak public supply usage occurs at hour 19 (458.79 MW), possibly due to high demand and low 

availability of other sources. 

iii. Public utility supply is  avoided in hours 23 and 24, reducing dependency during off-peak times.4.5 

RESULTS of SA 

Table 6: Output of four sources of power generation for 24-hour period, best CO2 emission cost, and best 

synchronization penalty.  

Hour P (Solar) P(phess) P (diesel) P (public) Cost 

24 -1 0.000000    50.288244    0.000000   290.618950   38669.915665 

1-2 0.000000    0.000000 7.759912 300.660601 40220.740898 

2-3 0.000000    42.027688 0.000000 284.222254 42556.500363 

3-4 0.000000    546.634655 0.000000 0.000000 37059.963020 

4-5 244.597356 409.325730 0.000000 0.000000 39424.432972 

5-6 305.725829 641.376827 0.572861 0.000000 58503.046732 

6-7 40.089307 775.539375 0.000000 388.803623 98527.547013 

7-8 697.043943 272.802676 312.801150 0.000000 115795.480452 

8-9 234.999690 201.744669 471.985980 227.847036 149273.108618 

9-10 390.258567 420.070450 235.350750 0.000000 97587.303175 
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10-11 0.000000 0.000000 711.979087 179.561472 165443.752998 

11-12 536.567292 0.000000 52.682792 191.857844 59602.656834 

12-13 0.000000 761.463999 0.000000 0.000000 52369.697127 

13-14 764.793718 91.134128 0.000000 0.000000 55414.836953 

14-15 301.175841 188.535765 356.731819 42.192710 104696.083479 

15-16 0.000000 64.175185 308.912791 558.717392 133900.488747 

16-17 0.000000 271.627980 69.295010 578.493439 102558.835317 

17-18 0.000000 453.721553 0.000000 453.398299 84826.123251 

18-19 0.000000 820.760146 0.000000 117.625810 67027.791179 

19-20 0.000000 527.134100 0.000000 326.243914 77953.866052 

20-21 0.000000 150.198911 0.140190 479.968765 67027.791179 

21-22 0.000000 75.011929 51.479322 437.956778 68139.470333 

22-23 0.000000 127.730213 59.466498 217.890196 54377.948814 

23-24 0.000000 324.368075 0.000000 16.401074 23208.536157 

 

Power Source Cost (N) 

Total Solar Cost 168732.074 

Total PHESS Cost 461163.027 

Total diesel fuel cost 537831.633 

Total Public Power Supply Cost 611095.219 

Overall Total Cost 1834763.012 

Best Emission Cost 14076.46 

Synchronization Penalty 0 

 

Analysis of Power Dispatch and Cost Distribution 

This dataset provides hourly dispatch values for four power sources: Solar PV (P_solar), pumped hydro-energy 

storage system (PHESS), Diesel Generator (P_diesel), and public utility supply (P_public), along with their 

respective costs. 

Power Source use Trends 

Solar PV Generation 

i. Solar generation is only available between hours 4 and 14, reflecting daytime operation. 

ii. The peak solar generation occurs at hour 13-14 (764.79 MW), which is aligned with the maximum 

irradiance. 

iii. No solar usage outside daylight hours, requiring reliance on other sources. 

PHESS (Pumped Hydro Energy Storage System) 

i. PHESS is used consistently throughout the day. 

ii. Peak PHESS usage at hour 18-19 (820.76 MW) likely supports evening peak demand. 

iii. The lowest PHESS usage occurs at hour 15-16 (64.18 MW), indicating lower loads or alternative sources 

meeting demand. 

Diesel Generator 

i. The use of diesel is significantly increased, thereby increasing the total cost. 

ii. Peak diesel usage at hour 10-11 (711.98 MW) possibly covering a sudden demand rise. 

iii. Diesel is frequently used at night, indicating a lack of available renewable/storage resources. 

iv. Heavy diesel reliance compared to previous datasets, thereby increasing operational costs. 

Public Utility Supply 

i. Utility supply is used throughout the day, with peaks in early morning and late evening. 

ii. Peak utility usage occurs at hour 15-16 (558.71 MW) and 16-17 (578.49 MW). 

iii. Minimal public supply reliance at hours 12-13 and 13-14, likely due to high solar and PHESS contributions. 
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Table 6: Cost of Power, Emission and Synchronization Penalty 

Power Source 

Generation Method 

Total cost of 

Generation (N) 

Best CO₂ Emissions 

Cost (N) 

Best Synchronization 

penalty 

HPSO-SA 1,246,765.58 

 

10,695.87 0 

HPSO-GA 1,33,9047.98 

 

13,096.83 0 

PSO 1,418,786.74 

 

14,442.32 0 

GA 1,445,289.88 

 

15,184.37 0 

SA 1,834,763.01 14,076.46 0 

 

Table 6 shows that HPSO-SA is the most cost-effective method for microgrids, achieving the lowest operational 

cost (₦1,246,765.58) and CO₂ emissions (N10, 695.87) compared to HPSO-GA, PSO, and GA. This is attributed 

to its balanced global search (PSO) and local optima avoidance (SA). The analysis highlights the importance of 

Solar PV and PHESS in reducing reliance on expensive and polluting sources, revealing an optimal cost-

effectiveness range. Load dispatch graphs demonstrate the algorithms’ ability to manage solar patterns, PHESS 

contributions, minimal diesel use, and strategic utility supply for sustainable and cost-efficient microgrid 

operation. 

5. Conclusion 

Facing power shortages and rising costs, this study optimized unit commitment in a University of Jos hybrid 

microgrid (solar PV, PHESS, and diesel, utility) using computational intelligence (GA, PSO, SA, PSO-GA, PSO-

SA) and an electronic synchronizer for stability. Simulations showed PSO-SA achieved the lowest operational 

costs (₦1,246,765.58) and emissions by effectively using solar energy and PHESS and minimizing diesel 

consumption. The model successfully scheduled diverse sources over 24 hours, implicitly integrated synchronizer 

constraints (zero penalty), and compared algorithm performance. The PSO-SA demonstrated the best balance of 

cost and environmental impact while maintaining system reliability, proving superior for this microgrid. 
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