COMPUTATIONAL INTELLIGENCE FOR COST- AND EMISSION-OPTIMIZED UNIT COMMITMENT IN HYBRID MICROGRIDS.
Abstract
This study addresses the challenge of efficient energy management in microgrids facing rising electricity costs and power shortages. The study tackles the limitations of traditional fossil fuels and the intermittency of renewables by developing an optimized unit commitment framework for a hybrid microgrid (Solar PV, PHESS, utility supply, diesel generator) at the University of Jos. Computational intelligence techniques (GA, PSO, SA, PSO-GA, PSO-SA) were implemented in Python, incorporating an electronic synchronizer for stability and aiming to minimize operational costs and emissions. The simulation results revealed that the hybrid PSO-SA algorithm achieved the lowest cost (₦1,246,765.58) and CO₂ emissions (N10695.87), demonstrating the effectiveness of hybrid optimization and the benefits of Solar PV and PHESS in reducing reliance on conventional sources. This study highlights the potential of computational intelligence to enhance microgrid efficiency and suggests future research on algorithm fine-tuning and hybrid approaches for further performance improvements.
Keywords:
Computational intelligence, Hybrid, Intermittency, Microgrids, Optimization, Synchronizer, Unit CommitmentDownloads
Published
DOI:
https://doi.org/10.5281/zenodo.16534179Issue
Section
How to Cite
License
Copyright (c) 2025 B.I Gwaivangmin, G.A Bakare, Y.S Haruna, A.L Amoo , Ali M.T

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abdou, I. and Tkiouat, M. (2018). Unit commitment problem in electrical power system: A Literature Review. International Journal of Electrical and Computer Engineering (IJECE) 8 (3) pp. 1357- 1372
Abuelrub, A., Awwad, B., & Al-Masri, H. M. K. (2023). Solving the wind-integrated unit commitment problem using a modified African vulture’s optimization algorithm. IET Generation, Transmission & Distribution, 17(16), pp. 3678-3691. https://doi.org/10.1049/gtd2.12924
Aharwar, A., Naresh, R., Sharma, V., and Kumar, V. (2023). Unit commitment problem in transmission systems, models, and approaches: A review. Electric Power Systems Research, 223(1), 109671. DOI: 10.1016/j.epsr.2023.109671
Al-Kubragyi, S. S. A., and Ali, I. I. (2025). A Hybrid Moth Flam Algorithm Based on Particle Swarm Optimization for Unit Commitment Problem Solving. Journal Européen des Systèmes Automatisés, 58(1), 39. https://doi.org/10.18280/jesa.580105
Ang, Y. Q., Polly, A., Kulkarni, A., Chambi, G. B., Hernandez, M., and Haji, M. N. (2022). Multi-objective optimization of hybrid renewable energy systems with urban building energy modeling for a prototypical coastal community. Renewable Energy, 201, 72-84. https://doi.org/10.1016/j.renene.2022.09.126
Anyaka, B., Felix, J., Chike, K., and Okoro, P. (2020). Optimal unit commitment of a power plant using particle swarm optimization approach. International Journal of Electrical and Computer Engineering, 10(2), 1135-1141. doi: 10.11591/ijece. V10i2.pp1135-1141.
Arefin, S., Kamwa, I., Ishraque, M. F., Muyeen, S. M., Hasan, K. N., Saidur, R., Rizvi, S. M., Shafiullah, M., and Al-Sulaiman, F. A. (2023). Evaluation of different optimization techniques and control strategies of hybrid microgrid: A review. Energies, 16(4), 1792. https://doi.org/10.3390/en16041792
Bakirtzis, E. A., Marneris, I. G., Vagropoulos, S. I., Biskas, P. N., and Bakirtzis, A. G. (2018). Demand response management by rolling-unit commitment for high renewable energy penetration. In 2018 International Conference on Smart Energy Systems and Technologies (SEST) pp. 1-6. DOI: 10.1109/SEST.2018.8495820.
Bhattacharya, A., Chattopadhyay, P. K. (2011). Solving the economic emission load dispatching problems using hybrid differential evolution. Applied Soft Computing, 11(2), 2526-2537. https://doi.org/10.1016/j.asoc.2010.09.008
Blakers, A., Nadolny, A., Stocks, R. (2022). The Bluefield Pumped Hydro Energy Storage Atlas. Journal and Proceedings of the Royal Society of New South Wales, 155(2), pp.198–201.
Boqtob, O., El Moussaoui, H., El Markhi, H., and Lamhamdi, T. (2019). Optimal Robust Unit Commitment of a Microgrid Using Hybrid Particle Swarm Optimization with Sine Cosine Acceleration Coefficients. International Journal of Renewable Energy Research, 9(3). Pp.1125-1134
Bolurian, A., Akbari, H., & Mousavi, S. (2022). Day-ahead optimal scheduling of microgrid with considering demand-side management under uncertainty. Electric Power Systems Research, 209, 107965. https://doi.org/10.1016/j.epsr.2022.107965
Center for Sustainable Systems, (2023). Photovoltaic Energy Factsheet. University of Michigan. Pub. No. CSS07-08.
Cordera, F., Moreno, R., and Ordoñez, F. (2023). Unit commitment problem with energy storage under correlated renewables uncertainty. Operations Research, 71(6), pp.1960-1977. https://doi.org/10.1287/opre.2021.0211
Das, G., De, M., and Mandal, K. K. (2021). Multi-objective optimization of hybrid renewable energy system by using novel autonomic soft computing techniques. 2021. Computers and Electrical Engineering, 94, 107350. https://doi.org/10.1016/j.compeleceng.2021.107350
Department of Energy (2022) U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. United States. [Web Archive] The Library of Congress,https://www.loc.gov/item/lcwaN0031091/.
Feng, Y., Wei, W., Tian, Y., and Mei, S. (2024). Integrating day-ahead unit commitments and real-time dispatch data for a bulk renewable-thermal-storage generation base. Journal of Energy Storage, 93, 112074. https://doi.org/10.1016/j.est.2024.112074
Glover, J. D., Sarma, M. S., and Overbye, T. J. (2021). Power system analysis and design (9th ed.). Cengage Learning.
González-Niño, M. E., Sierra-Herrera, O. H., Pineda-Muñoz, W. A., Muñoz-Galeano, N., and López-Lezama, J. M. (2025). Exploring Technology Trends and Future Directions for Optimized Energy Management in Microgrids. Information, 16(3), 183. https://doi.org/10.3390/info16030183
Hosseini-Firouz, M., Alemi, A., Alefy, B., and Balalpour, S. (2021). The unit commitment model under uncertainty of wind power producer. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 45(2), pp.1295-1309. https://doi.org/10.1007/s40998-021-00429-6
IEEE. (2022). IEEE Standard for Interconnection and Interoperability of Inverter-Based Resources (IBRs) Interconnecting with Associated Transmission Electric Power Systems. (IEEE Std 2800-2022, pp. 1-180). IEEE. https://doi.org/10.1109/IEEESTD.2022.9762253
Ji, L. T., Jing, X. Y., Wang, P., and Yang, W. (2024). A unit commitment method for pumped storage in renewable energy systems via a twofold particle swarm optimization algorithm. Journal of Physics Conference Series, 2752(1), 012227. doi 10.1088/1742-6596/2752/1/012227
Hasan, H., Karimi, S., and Moradi, M. (2024). A scheduling framework for a multi‐agent active distribution network in presence of renewable energy sources. IET Generation, Transmission and Distribution, 18(11), 2719-2735. https://doi.org/10.1049/gtd2.13178
Javed, M. S., Ma, T., Jurasz, J., and Amin, M. Y. (2020). Solar and wind power generation systems with pumped hydroelectric storage: Review and future perspectives. Renewable Energy, 148, pp.176-192. https://doi.org/10.1016/j.renene.2019.11.157
Kamboj, V. K., & Malik, O. P. (2024). Optimal Unit Commitment and Generation Scheduling of an Integrated Power System with Plug-In Electric Vehicles and Renewable Energy Sources.
Energies. 2024, 17(1), 123; https://doi.org/10.3390/en17010123
Kersting, W. H., & Li, F. (2019). Distribution system modeling and analysis with MATLAB® and PSCAD® (3rd Ed.). CRC Press.
Khunkitti, S., Watson, N., Chatthaworn, R., and Siritaratiwat, A. (2019). An Improved DA-PSO Optimization Approach for Unit Commitment Problem. Energies, 12(12), 2335, 2019. https://doi.org/10.3390/en12122335
Kundur, P. (1994). Power System Stability and Control. McGraw-Hill Education, New York..
Lazard (2022) Least Cost of Energy.https://www.lazard.com/media/2ozoovyg/lazards-lcoeplus-april-2022.pdf.
Manoharan, P., Ravichandran, S., Ramakrishnan, C., Jangir, P., Houssein, E. H., and Deb, S. (2023). An efficient and reliable scheduling algorithm for unit commitment schemes in microgrid systems using an enhanced mixed-integer particle swarm optimizer considering uncertainties. Energy Reports, 9, 1029-1053. https://doi.org/10.1016/j.egyr.2022.12.024
Manoharan, P., Chandrasekaran, K., Chandran, R., Ravichandran, S., Mohammad, S., and Jangir, P. (2024). An effective strategy for the unit commitment of microgrid power systems integrated with renewable energy sources, including the effects of battery degradation and uncertainties. Environmental Science and Pollution Research International, 31(7), 11037-11080. https://doi.org/10.1007/s11356-023-31608-z.
Marković, M., Bossart, M., and Hodge, B.-M. (2023). Machine learning for modern power distribution systems: Progress and perspectives. Journal of Renewable and Sustainable Energy, 15(3), 032301. https://doi.org/10.1063/5.0147592Mena, R., Godoy, D. R., Kristjanpoller, F., and Viveros, P. (2024). A multi-objective two-stage stochastic unit commitment model for wind- and battery-integrated power systems. Journal of Energy Storage, 89, 111723. https://doi.org/10.1016/j.est.2024.111723.
Mohammadi, F., Trakas, D., Ardakani, M., and Hatziargyriou, N. D. (2021, March). Machine Learning-assisted Stochastic Unit Commitment during Hurricanes with Predictable Line Outages. Power Systems, IEEE Transactions.https://doi.org/10.1109/TPWRS.2021.3069443
Momoh, J. A. (2012). Smart Grid: Fundamentals of Design and Analysis. Wiley-IEEE Press. Moretti, L., Martelli, E., & Manzolini, G. (2020). An efficient robust optimization model for the unit commitment and dispatch of multi-energy systems and microgrids. Applied Energy, 261, 113859. https://doi.org/10.1016/j.apenergy.2019.113859
Nagra, A.; Han, F.; Ling, Q. H., and Mehta, S. (2019, March). An Improved Hybrid Method Combining Gravitational Search Algorithm with Dynamic Multi Swarm Particle Swarm Optimization. IEEE Access, pp (99), 1-1. https://doi.org/10.1109/ACCESS.2019.2903137
North American Reliability Corporation (NERC) (2020) Bulk Electric System Definition Reference Document. Https: www.nerc.org.
Obaro, A., Munda, J. L., Siti, M., and Yusuff, A. (2018). Energy dispatch of decentralized hybrid power system. International Journal of Renewable Energy Research, 8(4), pp.2131-2145.
Paul, K., Jyothi, B., Kumar, R. S., Singh, A. R., Bajaj, M., Kumar, B. H., and Zaitsev, I. (2025). Optimizing sustainable energy management in grid-connected microgrids using quantum particle swarm optimization for cost and emission reduction. Scientific Reports 15, 5843. https://doi.org/10.1038/s41598-025-90040-0
Pastore, L. M., Groppi, D., and Feijoo, F. (2024). District Heating Deployment and Energy-Saving Measures to Decarbonize the Building Stock in 100% Renewable Energy Systems. Buildings, 14(8), 2267–2283, 2015.
Pourahmadi, F., & Kazempour, J. (2024). Unit Commitment Predictor with a Performance Guarantee: A Support Vector Machine Classifier. https://doi.org/10.48550/arXiv.2310.08601
Qin, F., Azlan, M. Z., Kai-Qing, Z., Norfadzlan, Y., Didik Dwi, P., Rozita, A. J., Zaheera, Z. A., Mahadi, B., Yusri, K., Mazlina, A. M. (2025). Hybrid Harmony Search Algorithm Integrating Differential Evolution and Lévy Flight for Engineering Optimization. IEEE Access, 13, 13534-13572. Https://Doi. Org/10.1109/ACCESS.2025.3468406
Ramasamy, K., Manoharan, M., Narayanasamy, P., and Babu, W. R. (2024, October). Hybrid technique for leveraging unit commitment in smart grids: minimizing operating costs and carbon dioxide emissions. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-024-05507-3
Ranganathan, S., Vaithiyanathan, V., Panjamoorthy, P., and Ellappan, V. (2021). Self-Adaptive Firefly Algorithm for solving Unit Commitment Problem in Power System. Journal of Physics Conference Series, 1921(1), 012066. doi: 10.1088/1742-6596/1921/1/012066
Rendroyoko, I., Sinisuka, N. I., Debusschere, V., and Koesrindartoto, D. (2021, June). Integration Method of Unit Commitment Using PL-GA Binary Dispatch Algorithm for Intermittent RES in Isolated Microgrids System. International Journal on Electrical Engineering and Informatics, 13(2), 449-464. 2 https://doi.org/10.15676/ijeei.2021.13.2.12
Ritchie, H., Roser, M., Rosado, P. (2022). Renewable Energy. Our World in Data. Retrieved from https://ourworldindata.org/renewable-energy
Salman, D., & Kusaf, M. (2021). Short-Term Unit Commitment by Using Machine Learning to Cover the Uncertainty of Wind Power Forecasting. Sustainability, 13(24), 13609. https://doi.org/10.3390/su132413609
Sati, S. E., Abdelemam, A. M., Atif, A., Ullah, W., and Salih, M. (2024). A methodological approach with application to integrating carbon emission externalities costs in unit commitment. IEEE Access, PP(99), 1-1. https://doi.org/10.1109/ACCESS.2024.3461757
Sayed, A., Ebeed, M., Ali, Z. M., Abdel-Rahman, A. B., Ahmed, M., Abdel Aleem, S. H. E., El-Shahat, A., and Rihan, M. (2021). A Hybrid Optimization Algorithm for Solving of the Unit Commitment Problem Considering Uncertainty of the Load Demand. Energies, 14(23), 8014. https://doi.org/10.3390/en14238014
Singh, A., Khamparia, A., & Al-Turjman, F. (2024). A hybrid evolutionary approach for multi-objective unit commitment problem in power systems. Energy Reports, 11(2), 2439-2449. https://doi.org/10.1016/j.egyr.2024.02.004
Singh, A. R., Dey, B., Misra, S., Kumar, R. S., Bajaj, M., and Blazek, V. (2025). A hybrid demand-side policy for balanced economic emissions in microgrid systems. iScience, 28, 112121. https://doi.org/10.1016/j.isci.2025.112121
Sovacool, B. K., Baum, C. M., Low, S., Roberts, C., and Steinhauser, J. (2022). Climate policy for a net-zero future: ten recommendations for Direct Air Capture. Environmental Research Letters, 17(7), 074014. https://doi.org/10.1088/1748-9326/ac77a4
Suhail, M., Raj, S., Babu, R., Kumar, S., and Sagrolikar, K. (2023). A hybrid moth–flame algorithm with particle swarm optimization with application in power transmission and distribution. Decision Analytics Journal, 6(1), 100182. Doi:10.1016/j.dajour.2023.100182
Syama, S., Ramprabhakar, J., Anand, R., and Guerrero, J. M. (2024). An integrated binary metaheuristic approach for dynamic unit commitment and economic emission dispatch for hybrid energy systems. Scientific Reports, 14(1), 23964. https://doi.org/10.1038/s41598-024-75743-0
Tian, H., Wang, K., Yu, B., Song, C., and Jermsittiparsert, K. (2021). Hybrid improved Sparrow Search Algorithm and sequential quadratic programming for cost minimization of hybrid photovoltaic, diesel generator, and battery energy storage system. Journal of Industrial & Management Optimization, 17(2), 6237-6253. https://doi.org/10.1080/15567036.2021.1905111
Wood, A. J., Wollenberg, B. F., and Sheblé, G. B. (2013). Power generation, operation, and control (3rd ed.). Wiley.
Xiao, B., GAO, Z., Peng, H., Chen, K., Li, Y., and Liu, K. (2024). Robust Optimization of Large-Scale Wind–Solar Storage Renewable Energy Systems Considering Hybrid Storage Multi-Energy Synergy. Sustainability, 16(1), 243. https://doi.org/10.3390/su16010243
Xiu, L.-C.; Kang, Z.-L.; Huang, P. (2019). Unit commitment using improved adjustable robust optimization for large-scale new energy power stations. The Journal of Engineering, 2019(16), 334-338. https://doi.org/10.1049/joe.2018.8926
Xu, X.-F., Wang, K., Ma, W.-H., Wu, C.-L., Huang, X.-R., Ma, Z.-X., and Li, Z.-H. (2024). Multi-objective particle swarm optimization algorithm based on multi-strategy improvement for hybrid energy storage optimization configuration. Renewable Energy, 223, 120086. https://doi.org/10.1016/j.renene.2024.120086
Yang, Y., and Wu, L. (2021). Machine learning approaches to the unit commitment problem: Current trends, emerging challenges, and new strategies. The Electricity Journal, 34(1), 106889. https://doi.org/10.1016/j.tej.2020.106889
Zhang, X., Zhang, Y., Ji, X., Ye, P., and Li, J. (2023). Unit commitment of integrated energy systems considering conditional value-at-risk and P2G. Electric Power Systems Research, 221, 109398. https://doi.org/10.1016/j.epsr.2023.109398
Zhu, Y., Liu, X., Zhai, Y., and Deng, R. (2019). Monthly unit commitment model and algorithm for renewable energy generation considering system reliability. Mathematical Problems in Engineering, 3835296. https://doi.org/10.1155/2019/3835296
Zuniga Vazquez, D. A., Ruiz Duarte, J. L., Fan, N., and Qiu, F. (2022). N-1-1 contingency-constrained unit commitment with renewable integration and corrective actions. Annals of Operations Research, 316(1), pp.493-511. https://doi.org/10.1007/s10479-021-04204-y