EFFECT OF TITANIUM DIOXIDE PHOTOCATALYSTS ON HYDROGEN PRODUCTION FROM RAW BIOMASS
Abstract
The rapid increase in global energy demand has led to the search for clean and sustainable energy sources. In recent years, the possibility of hydrogen production and utilization has become an area of interest. Efficient methods for hydrogen production must be developed for hydrogen to be a viable source of energy. Photocatalytic reforming using organic sacrificial agents is a popular area, with the majority of research focusing on the development of highly active photocatalysts for the process. This study aimed to investigate the potential of titanium dioxide (P25) and titanium tetraisoproxide (TTIP) photocatalysts on the photocatalytic reforming of glucose and Ipomea asarifolia leaves. Initially, the effect of varying glucose concentrations was investigated over different weights of bare TiO2 (P25) and titanium tetraisoproxide catalysts. It was found that an ideal glucose concentration of around 20 mg/L over 2g of both catalysts enhanced the rate of hydrogen production by many-fold, even though P25 was more active. No hydrogen was recorded for Ipomea asarifolia over the titanium tetraisoproxide catalyst. However, a considerable amount of H2 was produced from the ipomea in the presence of P25
Keywords:
Biomass, Hydrogen Production, Titanium, Dioxide, Photocatalysis, GlucoseDownloads
Published
DOI:
https://doi.org/10.5281/zenodo.17106838Issue
Section
How to Cite
License
Copyright (c) 2025 Bello Bungudu Ahmad , Nasiru Sharif

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ahmad, B. B., Davies, P. R., Sankar, M., Powell, J., & Toledo Camacho, S. Y. (2023). Effect of Alkali Metal Cations on the TiO2 P25 Catalyst for Hydrogen Generation by the Photoreforming of Glycerol. Chemistry Select, 8(48), e202304301. https://doi.org/10.1002/slct.202304301
Al-Mazroai, L. S., Bowker, M., Davies, P., Dickinson, A., Greaves, J., James, D., & Millard, L. (2007). The photocatalytic reforming of methanol. Catalysis Today, 122(1–2), Article 1–2. https://doi.org/10.1016/j.cattod.2007.01.022
Bahruji, H., Bowker, M., Davies, P. R., & Pedrono, F. (2011). New insights into the mechanism of photocatalytic reforming on Pd/TiO2. Applied Catalysis B: Environmental, 107(1–2), 205–209. https://doi.org/10.1016/j.apcatb.2011.07.015
Bisquert, J., Zaban, A., & Salvador, P. (2002). Analysis of the Mechanisms of Electron Recombination in Nanoporous TiO 2 Dye-Sensitized Solar Cells. Nonequilibrium Steady-State Statistics and Interfacial Electron Transfer via Surface States. The Journal of Physical Chemistry B, 106(34), Article 34. https://doi.org/10.1021/jp026058c
Bowker, M., & Jones, W. (2020). Methanol photo-reforming with water on pure titania for hydrogen production. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2176), Article 2176. https://doi.org/10.1098/rsta.2020.0058
Bowker, M., Morton, C., Kennedy, J., Bahruji, H., Greves, J., Jones, W., Davies, P. R., Brookes, C., Wells, P. P., & Dimitratos, N. (2014). Hydrogen production by photoreforming of biofuels using Au, Pd and Au–Pd/TiO2 photocatalysts. Journal of Catalysis, 310, 10–15. https://doi.org/10.1016/j.jcat.2013.04.005
Colmenares, J. C., & Luque, R. (2014). Heterogeneous photocatalytic nanomaterials: Prospects and challenges in selective transformations of biomass-derived compounds. Chem. Soc. Rev., 43(3), Article 3. https://doi.org/10.1039/C3CS60262A
David, E., Kopac, J., Armeanu, A., Niculescu, V., Sandru, C., & Badescu, V. (2019). Biomass—Alternative renewable energy source and its conversion for hydrogen rich gas production. E3S Web of Conferences, 122, 01001. https://doi.org/10.1051/e3sconf/201912201001
Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5–8), 53–229. https://doi.org/10.1016/S0167-5729(02)00100-0
Fujishima, A., & Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), Article 5358. https://doi.org/10.1038/238037a0
Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), Article 1. https://doi.org/10.1016/S1389-5567(00)00002-2
Fujishima, A., Zhang, X., & Tryk, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), Article 12. https://doi.org/10.1016/j.surfrep.2008.10.001
Grätzel, M. (2001). Photoelectrochemical cells. 414, 7.
Grosman, G. M., & Krueger, A. B. (1995). Economic growth and the environment. Quarterly Journal of Economics, 110(2), 353.
Hutchings, G. J., & Catlow, C. R. (2018). Designing heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2216), 20180514. https://doi.org/10.1098/rspa.2018.0514
Idriss, H. (2020). Hydrogen production from water: Past and present. Current Opinion in Chemical Engineering, 29, 74–82. https://doi.org/10.1016/j.coche.2020.05.009
Kawai, T., & Sakata, T. (1980). Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature, 286(5772), 474–476. https://doi.org/10.1038/286474a0
Kondarides, D. I., Daskalaki, V. M., Patsoura, A., & Verykios, X. E. (2008). Hydrogen Production by Photo-Induced Reforming of Biomass Components and Derivatives at Ambient Conditions. Catalysis Letters, 122(1–2), 26–32. https://doi.org/10.1007/s10562-007-9330-3
Lan, Y., Lu, Y., & Ren, Z. (2013). Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy, 2(5), Article 5. https://doi.org/10.1016/j.nanoen.2013.04.002
Lathasree, S., Rao, A. N., SivaSankar, B., Sadasivam, V., & Rengaraj, K. (2004). Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions. Journal of Molecular Catalysis A: Chemical, 223(1–2), Article 1–2. https://doi.org/10.1016/j.molcata.2003.08.032
Leung, D. Y. C., Fu, X., Wang, C., Ni, M., Leung, M. K. H., Wang, X., & Fu, X. (2010). Hydrogen Production over Titania-Based Photocatalysts. ChemSusChem, 3(6), 681–694. https://doi.org/10.1002/cssc.201000014
Linsebigler, A. L., Lu, Guangquan., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), Article https://doi.org/10.1021/cr00035a013
Mazloomi, K., & Gomes, C. (2012). Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews, 16(5), 3024–3033. https://doi.org/10.1016/j.rser.2012.02.028
Nolan, N. T., Seery, M. K., & Pillai, S. C. (2009). Spectroscopic Investigation of the Anatase-to-Rutile Transformation of Sol−Gel-Synthesized TiO 2 Photocatalysts. The Journal of Physical Chemistry C, 113(36), Article 36. https://doi.org/10.1021/jp904358g
Ohno, T., Sarukawa, K., Tokieda, K., & Matsumura, M. (2001). Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. Journal of Catalysis, 203(1), 82–86. https://doi.org/10.1006/jcat.2001.3316
Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Jr, W. J. F., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., & Tschaplinski, T. (2006). The Path Forward for Biofuels and Biomaterials. 311.
Rinsant, D., Chatel, G., & Jérôme, F. (2014). Efficient and Selective Oxidation of D ‐Glucose into Gluconic acid under Low‐Frequency Ultrasonic Irradiation. ChemCatChem, 6(12), 3355–3359. https://doi.org/10.1002/cctc.201402604
Scanlon, D. O., Dunnill, C. W., Buckeridge, J., Shevlin, S. A., Logsdail, A. J., Woodley, S. M., Catlow, C. R. A., Powell, Michael. J., Palgrave, R. G., Parkin, I. P., Watson, G. W., Keal, T. W., Sherwood, P., Walsh, A., & Sokol, A. A. (2013). Band alignment of rutile and anatase TiO2. Nature Materials, 12(9), Article 9. https://doi.org/10.1038/nmat3697
Serpone, N. (2006). Is the Band Gap of Pristine TiO 2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts? The Journal of Physical Chemistry B, 110(48), Article 48. https://doi.org/10.1021/jp065659r
Tran, N. H., & Kannangara, G. S. K. (2013). Conversion of glycerol to hydrogen rich gas. Chemical Society Reviews, 42(24), 9454. https://doi.org/10.1039/c3cs60227c
Wu, N. (2018). Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale, 10(6), 2679–2696. https://doi.org/10.1039/C7NR08487K
Yang, Y., Chang, C., & Idriss, H. (2006a). Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M=Pd, Pt or Rh). Applied Catalysis B: Environmental, 67(3–4), Article 3–4. https://doi.org/10.1016/j.apcatb.2006.05.007
Yang, Y., Chang, C., & Idriss, H. (2006b). Photo-catalytic production of hydrogen form ethanol over M/TiO2 catalysts (M=Pd, Pt or Rh). Applied Catalysis B: Environmental, 67(3–4), 217–222. https://doi.org/10.1016/j.apcatb.2006.05.007
Yu, J., Zhao, X., & Zhao, Q. (2000). Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. Thin Solid Films, 379(1–2), Article 1–2. https://doi.org/10.1016/S0040-6090(00)01542-X
Zhang, J., Zhou, P., Liu, J., & Yu, J. (2014). New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO 2. Physical Chemistry Chemical Physics, 16(38), 20382–20386. https://doi.org/10.1039/C4CP02201G
Zheng, T., Wu, C., Chen, M., Zhang, Y., & Cummings, P. T. (2016). A DFT study of water adsorption on rutile TiO2 (110) surface: The effects of surface steps. The Journal of Chemical Physics, 145(4), 044702. https://doi.org/10.1063/1.4958969