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Abstract

This paper presents a novel mechanism for the conversion of
vibrational motion into translational motion through the utilization of a
self-stopping device. The proposed mechanism addresses the need for
efficient energy transfer and controlled translation in various
engineering applications. The paper outlines the conceptual framework
of the transformation process and elaborates on the model of the system
under investigation. A series of comprehensive numerical
investigations have been conducted, exploring a range of parameters
relevant to the investigated system.

Through these numerical studies, the paper establishes characteristic
graphical relationships that highlight the relationship between input
parameters and resulting translational output. The dynamics of
vibrational transportation are thoroughly examined, shedding light
on the intricate mechanisms that govern the conversion process.
These findings contribute to a deeper understanding of the proposed
transformation mechanism and its potential applications.

The insights gained from the numerical investigations are
instrumental in the design of mechanisms utilizing this
transformative principle. The paper underscores the adaptability of
such mechanisms for integration into a variety of applications,
particularly within the realm of manipulators and robots. Examples
include the integration of these mechanisms into pipe robots and
other agricultural engineering devices, where controlled and precise
translation is crucial.

In summary, this paper introduces a mechanism that harnesses
vibrational energy for translational movement through a self-stopping
device. By delving into the theoretical underpinnings, numerical
investigations, and dynamic analysis, the paper lays the foundation for
the design and implementation of these mechanisms in diverse
engineering applications. The proposed transformative mechanism
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holds significant potential for advancing the field of manipulators,
robots, and agricultural engineering devices.

1. Introduction

Mechanism for transformation of vibrating motion into translational using the self-stopping device is proposed in
the paper.

Model of the investigated system is described. Numerical investigations for various parameters of the investigated
system are performed and typical graphical relationships are presented. Dynamics of vibrational transportation is
investigated.

The obtained results are used in the process of design of mechanisms of the proposed type. Mechanisms of the
proposed type can be used in elements of manipulators and robots, including pipe robots and other devices used
in agricultural engineering.

The investigated element of agricultural machines is shown in Fig. 1.

Vibratin
% Al '/ Mmass :
'—
H

Transported
mass

\Self—stopping mechanism
Fig. 1. The investigated element of agricultural machines
Vibrational motions are investigated in (Blekhman, 2018), (Kibirkstis et al., 2018), (Kurila, Ragulskiené, 1986),
(Ragulskiené, 1974), (Ragulskis et al., 1965), (Spedicato, Notarstefano, 2017), (Sumbatov, Yunin, 2013).
Dynamics of robots is investigated in (Glazunov, 2018), (Bolotnik et al., 2016), (Ragulskis et al., 2020),
(Ragulskis et al., 1987), (Ragulskis, Spruogis, Paskevicius et al., 2021), (Ragulskis, Spruogis, Pauliukas et al.,
2021), (Bansevicius et al., 1985), (Spruogis et al., 2002).
First model of the investigated system with two degrees of freedom is described. Then results of numerical
investigation of steady state motions for various parameters of the system are presented and conclusions about
dynamic behavior of the investigated system are made.
2. Model of the investigated manipulator with vibrational drive
First model in the dimensional form is described. Further x; is the displacement of the vibrating mass and x; is
the displacement of the transported mass and the upper dot denotes differentiation with respect to the time t, that
is:
0 g _d, (1)
dt
It is assumed that the vibrating mass is excited by a harmonic force. When the following
condition is satisfied:
X1 [0 x s, (2)
then dynamics of the system is described by the equations presented further. Dynamics of the
exciting mass is described by the equation:

P Omx 100 OHx 1 0Cxy O Fsin0t 0 fo00, (3)
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where m; denotes the exciting mass, H denotes the coefficient of viscous friction, C denotes the coefficient of
stiffness, F denotes the amplitude of harmonic excitation, ® denotes the frequency of harmonic excitation, fo
denotes the coefficient of dry friction.

Dynamics of the transported mass is described by the equation:

Poi O mx2200 0 Bx"2 0 0 DA fo 0, 4)

where my denotes the transported mass, B denotes the coefficient of viscous friction, A denotes the constant
external force acting to the transported mass.

When the following condition is satisfied:

X100 x ‘2, (5)

then dynamics of the investigated system is described by the equation:

Pi2 0Py Omxi 100 Omxo200 0 Hx" 0 Bx 20 Cx; O Fsinldt [0 A [J0. (6)

The equations are transformed to non-dimensional form by introducing the following notations:
2. Cc d F f0 A H B m? 0

plU_0O0pt, O, fO0,fo0,all5h, b0, DJE?DD .‘ﬁ'ﬁndD‘CCCleCmump

Thus, in non-dimensional parameters dynamics of the investigated system is described by the equations presented
further.

When the following condition is satisfied:

x100 0 x200, (8)

then dynamics of the system is described by the equations:

P2 000 hxiO O xi O fsin000 000, 0xC ©)

P2l L, 000bxed Daldfy, — 00.00xC (10)

When the following condition is satisfied:

x1 0 xal, (11)

then dynamics of the investigated system is described by the equation:

P12 RIOO00x00 O hx 0 Obxo0 O xi O fsin000 a 0 0.
0 0 xi (12)
C C

Numerical integration of the equations of motion is performed by using the Newmark constant average
acceleration procedure.
3. Investigation of steady state dynamics of the manipulator with vibrational drive
The following parameters of the investigated dynamical system are assumed:
001, f01,h 001,60 0.5, 001, b [0 0.1. (13)
Zero initial conditions are assumed:
x1 00 00, xq 000 00, x2 00 [0, x200 (1001 70, (14)
Results for three values of the constant force are presented:
al10, (15)alJ00.2, (16)all 0.2, (17)
thus, investigations are performed for the case when there is no constant force, when the value of the constant
force is negative and when the value of the constant force is positive.
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3.1. Results of investigations when there is no constant force

Non-dimensional displacement of the first degree of freedom, non-dimensional velocity of the first degree of
freedom, non-dimensional displacement of the second degree of freedom, non-dimensional velocity of the second
degree of freedom as functions of non-dimensional time are presented in Fig. 2.

Non-dimensional relative displacement and non-dimensional relative velocity as functions of nondimensional
time are presented in Fig. 3.

Phase trajectories of the first degree of freedom and of the second degree of freedom are presented in Fig. 4.
Phase trajectory of relative motion is presented in Fig. 5.
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a) Non-dimensional displacement of the first degree b) Non-dimensional velocity of the first degree of
of freedom as function of non-dimensional time freedom as function of non-dimensional time
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9) Non-dimensional displacement of the second

d) Non-dimensional velocity of the second degree of

degree of freedom as function of non-dimensional freedom as function of non-dimensional time time
Fig. 2. Dynamics of the investigated system for [10J1, f (11, h (1 0.1, fo [0 0.5, O01,b 1 0.1,a 00
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a) Non-dimensional relative displacement as function b) Non-dimensional relative velocity as function of
of non-dimensional time non-dimensional time

Fig. 3. Relative motions of the investigated system for [J[J1, f (J1,h [J 0.1, fo (1 0.5, O01,b 0 0.1,a 10

3.2. Results of investigations when the constant force is negative
Non-dimensional displacement of the first degree of freedom,
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non-dimensional velocity of the first degree of freedom, non-dimensional displacement of the second degree of
freedom, non-dimensional velocity of the second degree of freedom as functions of non-dimensional time are
presented in Fig. 6.

Non-dimensional relative displacement and non-dimensional relative velocity as functions of nondimensional
time are presented in Fig. 7.

Phase trajectories of the first degree of freedom and of the second degree of freedom are presented in Fig. 8.
Phase trajectory of relative motion is presented in Fig. 9.
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a) Phase trajectory of the first degree of freedom b) Phase trajectory of the second degree of freedom
Fig. 4. Phase trajectories of the investigated system for (111, f (11, h [0 0.1, (1 0.5, OO1,b [0 0.1,a 00
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Fig. 5. Phase trajectory of relative motion of the investigated system for
001, f01,h00.1,f00.5, 001, b 00.1,al]0
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Non-dimensional displacement of the first degree

b) Non-dimensional velocity of the first degree of freedom as function of non-dimensional time freedom as
function of non-dimensional time

c) Non-dimensional displacement of the second
d) Non-dimensional velocity of the second degree of degree of freedom as function of non-dimensional
time freedom as function of non-dimensional time
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Fig. 6. Dynamics of the investigated system for [1[]1, f (11, h (1 0.1, fo [0 0.5, 001, b [1 0.1, a [J [10.2
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a) Non-dimensional relative displacement as function
b) Non-dimensional relative velocity as function of non-dimensional time non-dimensional time
Fig. 7. Relative motions of the investigated system for [1[J1, f (11, h [1 0.1, fo (1 0.5, 011, b [1 0.1, a [1 [10.2
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a) Phase trajectory of the first degree of freedom  b) Phase trajectory of the second degree of freedom Fig. 8.
Phase trajectories of the investigated system for

pg. 18



Research Journal of Agriculture Vol. 13 (4)

001, £ 01, h 00.1, f6 0 0.5, 0O1,b [ 0.1,a [J [10.2
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Fig. 9. Phase trajectory of relative motion of the investigated system for
001, f01,h00.1, £ 0 0.5, 001,b J0.1,a [J [10.2

3.3. Results of investigations when the constant force is positive

Non-dimensional displacement of the first degree of freedom, non-dimensional velocity of the first degree of
freedom, non-dimensional displacement of the second degree of freedom, non-dimensional velocity of the second
degree of freedom as functions of non-dimensional time are presented in Fig.

10.

Non-dimensional relative displacement and non-dimensional relative velocity as functions of nondimensional
time are presented in Fig. 11.

Phase trajectories of the first degree of freedom and of the second degree of freedom are presented in Fig. 12.

X, X/
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144.513 157.080 144.513 157.080
a) Non-dimensional displacement of the first degree b) Non-dimensional velocity of the first degree of of
freedom as function of non-dimensional time freedom as function of non-dimensional time
X, X,
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c) Non-dimensional displacement of the second
d) Non-dimensional velocity of the second degree of

degree of freedom as function of non-dimensional freedom as function of non-dimensional time
Fig. 10. Dynamics of the investigated system for [J(J1, £ [J1, h [J 0.1, fo (1 0.5, 00J1,b J 0.1,a (1 0.2
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a) Non-dimensional relative displacement as function b) Non-dimensional relative velocity as function of
of non-dimensional time non-dimensional time

Fig. 11. Relative motions of the investigated system for [1[J1, f (11, h [1 0.1, fo (1 0.5, 001, b [0 0.1,a [1 0.2
Phase trajectory of relative motion is presented in Fig. 13.
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a) Phase trajectory of the first degree of freedom b) Phase trajectory of the second degree of freedom
Fig. 12. Phase trajectories of the investigated system for [1[11, f (J1,h [J 0.1, fo (J 0.5, 001, b [J 0.1,a [1 0.2

From the presented graphical results, it can be observed that the zones where the velocities of both degrees of
freedom are approximately equal depend on the value of the constant force. Substantial dependence of the distance
travelled by the second degree of freedom from the value of the constant force is also seen.

x‘n_x‘v
0.0030 XXq

-4.173 \

-227.263 -208.004

Fig. 13. Phase trajectory of relative motion of the investigated system for
O01L,f01,h 001,60 0.5, 001,b [10.1,a 0.2
4. Investigation of travelled distance in steady state regime of motion as function of frequency of excitation

The travelled distance of the second degree of freedom during a period of excitation in steady state regime of
motion as function of frequency of excitation for the three values of the constant external force is presented in
Fig. 14.

From the presented results optimal frequency of excitation corresponding to maximum value of the travelled
distance is determined.
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Fig. 14. Travelled distance during a period of excitation in steady state regime of motion as function of frequency
of excitation

5. Conclusions

Mechanism for transformation of vibrating motion into translational using the self-stopping device is proposed.
Model of the investigated system is presented as well as numerical investigations for various parameters of the
system are performed and graphical relationships for typical parameters of the investigated system are presented.
Dynamics of precise vibrational transportation is investigated.

Non-dimensional displacement of the first degree of freedom, non-dimensional velocity of the first degree of
freedom, non-dimensional displacement of the second degree of freedom, non-dimensional velocity of the second
degree of freedom as functions of non-dimensional time are presented. Nondimensional relative displacement
and non-dimensional relative velocity as functions of nondimensional time are also investigated. Phase
trajectories of the first degree of freedom and of the second degree of freedom are presented. Phase trajectory of
relative motion is also investigated. Investigations are performed for the case when there is no constant force,
when the constant force is negative and when the constant force is positive.

From the presented graphical results, it can be observed that the zones where the velocities of both degrees of
freedom are approximately equal depend on the value of the constant force. Substantial dependence of the
travelled distance from the value of the constant force is also seen.

The obtained results are used in the process of design of mechanisms of the proposed type. Mechanisms of the
proposed type can be used in elements of manipulators and robots, including pipe robots and other devices used
in agricultural engineering.
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