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 Nigeria, a prominent global producer of diverse crops, confronts 

persistent challenges in meeting domestic agricultural demands, despite 

government and development partner interventions. This paper delves 

into the utilization of Artificial Intelligence (AI) in agriculture as a 

potential solution to enhance food production, addressing the escalating 

predicaments faced by the agricultural sector in Nigeria. The 

agricultural landscape of Nigeria encompasses essential crops such as 

cocoa, palm oil, rice, cassava, maize, guinea corn, yam, beans, and 

millets, complemented by a substantial livestock population consisting 

of goats, sheep, cattle, and poultry. However, these endeavors are 

beleaguered by multifaceted challenges including disease outbreaks, 

pest infestations, water scarcity, inadequate drainage systems, labor 

scarcity, and a technology divide between farmers and innovation. 

Contributing to this landscape are hindrances like limited financial 

access, climate change ramifications, land degradation, and fragmented 

market accessibility. Additionally, Nigeria's projected population surge 

to exceed 400 million by 2050 underscores the pressing need for 

substantial food production enhancement. 

Historically, attempts at augmenting food production have centered on 

expanding cultivated lands and intensifying fertilizer and irrigation use, 

alongside reducing pre-harvest, harvest, processing, and distribution 

losses. However, this trajectory poses threats such as soil depletion, 

water scarcity, deforestation, and elevated greenhouse gas emissions. 

To counterbalance these adverse effects, the incorporation of AI-driven 

precision farming emerges as a transformative solution. The 

convergence of AI technologies with agricultural practices offers 

innovative avenues for improving productivity, resource utilization, 

and sustainability. This paper examines the diverse applications of AI 
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in agriculture and investigates the manifold opportunities and 

challenges inherent in their implementation within Nigeria's 

agricultural context. By leveraging AI-powered solutions for crop 

monitoring, disease prediction, precision irrigation, and supply chain 

optimization, Nigerian agriculture can evolve into a dynamic, 

technologically-driven sector capable of meeting the demands of a 

burgeoning population and addressing pressing environmental 

concerns. 
 

1.  INTRODUCTION   

Nigeria is a leading producer of many crops such as cocoa, palm oil, rice and cassava, maize, guinea corn, yam, 

beans, and millets (Onwualu, 2012).  Livestock mostly reared by farm families in Nigeria are the small ruminants 

like goats (76 million), sheep (43.4million), and cattle (18.4 million). In addition, poultry population stands at 

180 million poultry (FAO, 2018). However, domestic demands generally outstrip production, despite several 

interventions by the government and development partners to improve production. The agriculture sector faces 

numerous challenges including disease and pest infestation, insufficient available water, inadequate drainage, 

declining labour availability and knowledge gap between farmers and technology, leading to low output.  As 

enumerated by Njoku (2000) and Ugwukah (2020), other challenges are low technology, high production cost 

and poor distribution of inputs, limited financing, climate change and land degradation, high post-harvest losses 

and poor access to markets. 

The population of the country was predicted to exceed 400 million people by year 2050 (World Bank, 2022). To 

avert a looming food crisis, a significant improvement must be made to food production. Efforts, before now, 

have been concentrated on increasing the amount of agricultural land put under cultivation and the increased use 

of fertilizers and irrigation. Also, attempts have been made at significantly reducing food loss (at pre-harvest, 

harvest, processing and distribution stages in the food supply chain). However, cultivation of more lands is poised 

to leads to depletion of soils, water scarcity, widespread deforestation and high levels of greenhouse gas emissions 

(Koneswaran and Nierenberg, 2008; Oertel et al., 2016; Rojas-Downing et al., 2017). Adopting new methods like 

precision farming, with the application of AI to agriculture holds great promise. This paper reviews the 

applications of AI to agriculture and considers the opportunities and challenges it holds for Nigeria. 

2.  THE CONCEPT OF AI   

AI, also called machine Intelligence, is intelligence demonstrated by machines in contrast to natural intelligence 

displayed by humans and other animals (McCorduck, 2004). John McCarthy, who is popularly known as the 

‘Father of AI’ (Anderson, 2002 and Rajaraman, 2014), described AI as the science and engineering of making 

intelligent machines, especially intelligent computer programs (McCarthy, 2007). Intelligence itself has been 

defined as that quality that enables an entity to function appropriately and with foresight in its environment 

(Nilsson, 2010). It has also been described as a general mental ability for reasoning, problem solving, and learning. 

Because of its general nature, intelligence integrates cognitive functions such as perception, attention, memory, 

language, or planning.   

According to Abonamah et al., 2021, there are three types of AI:  Artificial Narrow Intelligence (ANI), Artificial 

General Intelligence (AGI) and Artificial Super Intelligence (ASI). The first type, which is ANI, also known as 

‘weak’ AI, has narrow range of abilities.  ANI can usually perform a single task—whether it is driving a car, 

playing chess, or recognizing spoken or written words. Although ANI systems are designed to focus on their tasks 

in real-time, with continuous learning from their environments, they are able to build knowledge over time and 
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become experts in performing their assigned tasks (Beaulac and Larribe, 2017). Thus, ANI is the most common 

and coherent kind of AI to be utilized by most people.  

AGI is the hypothetical ability of an intelligent agent to understand or learn any intellectual task that a human 

being can perform (Colom et al., 2010). This involves the ability to achieve a variety of goals, and carry out a 

variety of tasks, in a variety of different contexts and environments. A generally intelligent system should be able 

to handle problems and situations quite different from those anticipated by its creators (Goertzel, 2014).  There 

are yet no existing intelligent agents that possess the AGI properties, and progress in that direction had been slow 

(McCarthy, 2007). We still look forward to the day when a computer or a system is better than a human being – 

wiser, more creative, and more socially adept. 

ASI is a hypothetical ability of an intelligent agent to possess intelligence substantially exceeding that of the 

brightest and most gifted human minds. Currently, it is not technologically possible to produce machines that 

possess super intelligence properties. The computer is becoming an intelligent machine and there are indications 

that its level of intelligence may eventually surpass that of its human creator. If such a scenario comes true, then 

AI will transit in rapid succession to what is now commonly referred to as AGI, and then exponentially to ASI 

(Jens, 2015). Already, there are lots of worries about the social and ethical consequences of this development 

(Gill, 2016)  

Generally, AI techniques simulate human intelligence (Ayed and Hanana, 2021) and rely heavily on machine 

learning (ML) for most applications. ML uses statistical and mathematical methods to learn from datasets and to 

make data-driven predictions or decisions. The ML approach is classified into three major tasks: supervised, 

unsupervised, and reinforcement learning (Alloghani et al., 2020; Sharma et al., 2020).  In supervised learning, 

the aim is to map the input variables to the preferred output variable.  In supervised learning, the ML algorithm 

is given a training dataset, usually between 75 and 80% of the total data set, to work with (Longstaff et al., 2010; 

Bohani et al., 2021).  This training dataset serves to give the algorithm a basic idea of the problem, solution, and 

data points to be dealt with. The algorithm then finds relationships between the parameters given, essentially 

establishing a cause and effect relationship between the variables in the dataset. At the end of the training, the 

algorithm has an idea of how the data works and the relationship between the input and the output. Unsupervised 

machine learning holds the advantage of being able to work with unlabelled data, allowing much larger datasets 

to be worked on by the program. Relationships between data points are perceived by the algorithm in an abstract 

manner, with no input required from human beings (Karamzadeh and Moharrami, 2015; Sarker 2022). 

Reinforcement learning directly takes inspiration from how human beings learn from data in their day to day lives 

(Shteingart and Loewenstein, 2014; Dayan and Balleine 2002; Najar and Chetouani, 2021). It features an 

algorithm that improves upon itself and learns from new situations using a trial-and-error method. Favourable 

outputs are encouraged or ‘reinforced’, and nonfavourable outputs are discouraged or ‘punished’. Based on the 

psychological concept of conditioning, reinforcement learning works by putting the algorithm in a work 

environment with an interpreter and a reward system (Wu et al., 2018). The output result is given to the interpreter 

in every iteration of the algorithm, which decides whether the outcome is favourable or not. In typical 

reinforcement learning use-cases, such as finding the shortest route between two points on a map, the solution is 

not an absolute value. Instead, it takes on a score of effectiveness, expressed in a percentage value. The higher 

this percentage value, the more reward is given to the algorithm. Thus, the program is trained to give the best 

possible solution for the best possible reward.  (Judah et al., 2014; Cederborg et al., 2015; Najar and Chetouani, 

2021). 

https://it.toolbox.com/blogs/shrutiumathe/mphasis-unveils-its-deep-learning-algorithms-on-amazon-web-services-marketplace-for-machine-learning-073119
https://it.toolbox.com/blogs/shrutiumathe/mphasis-unveils-its-deep-learning-algorithms-on-amazon-web-services-marketplace-for-machine-learning-073119
https://it.toolbox.com/blogs/shrutiumathe/mphasis-unveils-its-deep-learning-algorithms-on-amazon-web-services-marketplace-for-machine-learning-073119
https://it.toolbox.com/blogs/shrutiumathe/mphasis-unveils-its-deep-learning-algorithms-on-amazon-web-services-marketplace-for-machine-learning-073119
https://it.toolbox.com/article/openais-robot-learns-to-solve-a-rubiks-cube-with-one-hand-peter-welinder-research-lead-openai-shares-insights
https://it.toolbox.com/article/openais-robot-learns-to-solve-a-rubiks-cube-with-one-hand-peter-welinder-research-lead-openai-shares-insights
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3.  APPLICATIONS OF AI IN AGRICULTURE    

According to the Food and Agriculture Organizations of the United Nations (FAO 2019), by 2050 global food 

production should increase by 70% to feed 9.6 billion people worldwide. Unless some drastic measures are taken, 

there may be disasters of food shortages (Nelson, 2010). For most of the 20th century, many key factors influenced 

the increases witnessed in food production: mechanization leading to cultivation of more lands, improved genetics 

and increased use of inputs. Notably, much of the land not yet in use today suffers from constraints (chemical, 

physical, endemic diseases, lack of infrastructure, etc.) that cannot easily be overcome or that it is not 

economically viable to do so (FAO, 2009).  Providing effective solutions to these old and new challenges require 

new insights. AI techniques when applied to agricultural processes tend to increase productivity and efficiency. 

AI-powered solutions will not only enable farmers to do more with less, it will also improve quality and ensure 

faster go-to-market for crops. Major applications areas are now briefly considered: 

i. Farm monitoring.   

The success of the farm enterprise is completely based on the end yield and the market rate. Crop yield depends 

on timely monitoring and scientific prescription of appropriate remedies (Jha et al., 2019; Dharani et al., 2021). 

During the production season, it is sometimes necessary to obtain visual indications of crop growth along with 

the geographic locations of those areas. AI and Internet of things (IoT) based monitoring systems give a precise 

extraction and analysis of data. The effect of physical conditions like humidity, temperature, soil temperature and 

moisture and light intensity on the plant growth, is monitored using IoT based monitoring system.  (Leon et al., 

2003; Alreshidi, 2019; Singh et al., 2020). AI furnishes a precise way to monitor the crop and to predict the yield 

in an automatic way.  

Robots, enabled by AI, have been employed to monitor respiration, photosynthetic activity, yield and other 

biological factors (Wang et al., 2012, Hamner et al., 2012). They have also been employed in pollution monitoring:   

measuring carbon dioxide and nitrous oxide emissions so that farmers can reduce their environmental footprint. 

ii. Plant’s disease and insect detection.  

Plant diseases and insect pests contribute to production loss, which can be tackled with continuous monitoring. 

Manual plant disease monitoring is both laborious and error-prone. Early detection of plant diseases using 

computer vision and AI can help to reduce the adverse effects of diseases and also overcome the shortcomings of 

continuous human monitoring (Abu-Naser, 2010; Chowdhury et al., 2021; Suhag et al., 2021). Plant Disease 

detection systems use various sensors to collect the plant-related data in form of images at different time intervals 

(Martinelli, et al., 2015; Win, 2018; Selvari et al., 2019; Hong et al., 2020; Suhag et al., 2021; Liu and Wang 2021; 

Chen et al., 2021; Li et al., 2022). 

iii. Intelligent farm chemicals application.  

Most conventional sprayers apply agrochemicals uniformly, despite the fact that distribution of weeds and pests 

is typically random or patchy, resulting in wastage of valuable compounds, increased costs, crop damage risk, 

pest resistance to chemicals, environmental pollution and contamination of products (Chen and Li, 2019; Idoje et 

al., 2021; Mohamed et al., 2021; Javaid et al.,2022). Smart sprayers utilizing machine vision and artificial 

intelligence to distinguish target pests or weeds from non-target objects (e.g. vegetable crops) and precisely spray 

on the desired target/location are of great importance.  Detection of unwanted pests on crops, or weed detection, 

is implemented with frame-capturing drone (Partel et al., 2020, Partel et al., 2021; Hafeez et al., 2022) and deep 

learning methods.   

Weeding is a very labour intensive and costly farm activity in Nigeria. Reducing the physical hardship, cost and 

time spent on such activities will increase the overall land yield, and losses due to failure of crops. There are 
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robots that can autonomously navigate a farm and deliver targeted sprays of herbicides help eliminate weeds 

(Slaughter et al., 2008 and Shapiro et al., 2009). Some crop-dusting robots also apply other agrochemicals (Hair 

2016).  

iv. Weeding.  

Weeds are unwanted plants that grow on farmlands and compete with crops for nutrients, space, 

and sunlight. If not removed, they obstruct crop growth, causing a reduction in crop yield and  

consequently, a reduction in profit for farmers (Marco et al., 2021). Efforts combining computer  

vision with traditional machine learning and deep learning are driving progress in weed detection  

and robotic approaches to mechanical weeding. Weed control robots are designed based on real- 

 

time image detection as the early identification and control of weeds is paramount.  
 

Development  

of a visual method of discriminating between crop seedlings and weeds is an 

important and  

necessary step towards the automation of non-chemical weed control systems in agriculture, and towards the 

reduction in chemical use through spot spraying (Aitkenhead et al., 2003; Partel et al., 2019; Andujar and 

Martinez-Guanter, 2022). Weeding robots are now becoming commercially available (Shiba and Miwa, 2022). 

These effectively save efforts while reducing environmental pollution caused by pesticide use (Mishra, 2021). 

v. Aerial survey and imaging.  

Drones, also called unmanned aerial vehicles (UAVs), are mostly associated with military, industry and other 

specialized operations, but with recent developments in area of sensors and Information Technology in last two 

decades, the scope of drones has also been widened to agriculture (Puri et al., 2017; Kim et al., 2019; Liu et al., 

2021).  Drone and global positioning systems (GPS) technology is giving agriculture a high-tech makeover. 

Drones have been useful in field, soil analysis and land management, planting, crop spraying / fertilizer 

application, farm monitoring / surveillance / health assessment, crop yield prediction etc. (Colomina and Molina, 

2014; Veroustraete, 2015; Santangeli et al., 2020; Roslim et al., 2021; Jung et al., 2021; Alghamdi et al., 2021; 

El-Hoummaidi et al., 2021).  In irrigation, drones have helped to identify which parts of a field are dry or need 

improvement (Talaviya et al., 2020).  

vi. Produce grading and sorting.  

Agricultural produce is graded based on their dimensions and other attributes. This grade is used to sort and assign 

them to different classes, and sometimes to different sales channels. More recently, as image processing 

algorithms emerged, visual inspection techniques provided a substitute to the human eye, enabling to detect many 

defects, which humans cannot detect when pace becomes faster (Mushiri et al., 2020; Thuyet et al., 2020; Menon 

et al., 2021).  The new wave of intelligent algorithms for grading and sorting is much more powerful than 

traditional visual analysis algorithms: they have automatic learning capabilities, which ensure a detection 

performance far beyond the speed and accuracy of any trained operator. There are sorting and grading systems 

for eggs (Patel et al., 1998), tomatoes (Kaur et al., 2018), mangoes (Thinh et al., 2019, Thong et al., 2019) and 

garlics (Thuyet et al., 2020). 

vii. Ploughing, Planting and other field operations.  

GPS-enabled, tele-operated, and autonomous tractors and harvesters (De-An et al., 2011; Reid et al., 2016; Grose, 

2022) have also hit the markets.  Accurate steering through crop rows that avoids crop damage is one of the most 

important tasks for agricultural robots utilized in various field operations, such as monitoring, mechanical 

weeding, or spraying. In practice, varying soil conditions can result in off track navigation due to unknown 
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traction coefficients so that it can cause crop damage (Kayacan et al., 2015). With advanced GPS, a tractor 

operator can tell which rows have been planted to avoid overlap, making sure every seed is in the right place, 

with the right depth, soil contact, and spacing that it needs to grow into a food-producing crop. GPSenabled self-

driving tractors and self-propelled equipment confer an additional level of accuracy to the farming operation, and 

John Deere said it augments that GPS signal with a real-time kinematic (RTK) system that provides pass-to-pass 

accuracy of ±1 inch (Pele, 2021). 

Intelligent robots that plant seeds possess automatic navigation in an agricultural area, and sowing seeds into the 

soil over a predefined map. With a robotic arm in the robot operating system, most setup have multiple sensors, 

to aid their work (Hassan et al., 2016). Additionally, some agricultural robots now have the ability to protect crops 

from harmful weeds that may be resistant to herbicide chemicals that are meant to eliminate them. To move plants 

around large greenhouses, including nursery automation, robots are also being used (Belforte et al., 2006).  

Robotic fruit and vegetable pickers (Bac et al., 2014) can work around the clock for faster harvesting. These 

robots are capable of harvesting crops at a much faster pace and higher volume than human workers. 

viii. Automation of irrigation  

The optimal use of water through irrigation has always been inextricably linked to the evolution of agriculture 

and successful farming. But efficiently managing natural water resources alongside a standard cost-benefit 

analysis for technology and infrastructure overheads is a delicate balancing act. With food demands only rising, 

water use is expected to increase an additional 15% to meet this demand (World Economic Forum, 2021). The 

importance of reducing water consumption is paramount, especially as agriculture is estimated to account for over 

70% of global water use (Parris, 2011; Gruère, 2020).  AI analysis of plant behaviour is a powerful tool that allows 

irrigation fine-tuning. Automatic plant irrigators are planted on the field through wireless technology for drip 

irrigation. Timely prediction of irrigation requirements and crop yields is necessary for farmer’s welfare and 

satisfaction. The beforehand prediction significantly contributes to minimizing production cost and maximizing 

crop yields (Arvind et al., 2017; Jha et al., 2018; Sinwar et al., 2020; Chougule and Mashalkar, 2022). The precise 

prediction of crops’ yields is also useful in planning various schemes, transport needs, buying mechanisms, 

storage infrastructure, and actual selling of crop by farmers to market (Vijayakumar and Balakrishnan, 2021). 

ix.  AI for Livestock, Fish and Poultry Farming  

AI helps livestock farms accumulate and analyse data to accurately predict consumer behaviour, like buying 

patterns, leading trends, etc. With increased investments, farms will be enabled to automate processes, reduce 

major costs and improve the quality of livestock products like milk (Morrone et al., 2021). 

There are now techniques for monitoring the health of farm animals with a high degree of accuracy using a camera 

and AI to achieve a “smart” cow-house or poultry house (Emanuelson,1988). Detailed observation by AI-powered 

image analysis has enabled early detection of injuries and illnesses that could impact the quantity and quality of 

milk production (Castro and New, 2016; Thilagu and Jayasudha, 2022). Facial recognition systems (Kumar and 

Singh 2018, Marsot et al., 2020), also monitor animals via cameras located, sometimes, on the roof of the barn. 

The data is then sent to a server on the farm. The main goals are to utilize the data to maximize production and 

limit stress levels on the animals. Tackling parasites, biosecurity, and diseases and advanced monitoring farm 

animals are now possible (Ernane and Costa, 2009; Phiri, 2018; Garcia et al.,  

2020,). Robots are also used for detection of oestrus (Saint‐Dizier and Chastant‐Maillard, 2012; Mottram, 2016), 

to deliver vaccines (Kumari and Dhawal, 2021) , detection of avian diseases or nutritional deficiencies in chicks 

(Sawabe,2006; Zhuang, 2018), detection of behavioural diseases like cannibalism (or aggressive pecking) 

(Mohanty et al.,  2021; Mott, 2022). 
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For monitoring the animals on a farm and their health, internet of things (IoT) devices employing different types 

of sensors video/image processing and classification capabilities, along with vocalization (sound) based livestock 

analysis have been a subject of intense research (Chaudhry et al., 2020; Congdon et al., 2022; Michie et al., 2022; 

Wang et al., 2022). Availability of growingly inexpensive computational resources, IoT devices, and standard 

algorithms, has made a strong case to employ modern day technology to continuously monitor the large farms 

with millions of birds and improve the overall productivity (Saint‐Dizzier and Chastant‐Maillard, 2012; Shinde 

2014; Singh et al., 2020; Neethirajan, 2020; Neethirajan and Kemp, 2021).  IoT devices are used to monitor the 

locations of cows and eradicate cattle theft. They can detect the fertility and health of cows ranging from single 

cows to herds. An IoT device mounted on the neck of a cow tracks its activity throughout the day. The IoT device 

also sends information about health issues and eating behaviour to farmers (Unold et al., 2020, Chaudhry et al., 

2020). The IoT devices are even used to milk cows (Righi et al., 2020, Akbar et al., 2020). They can also increase 

the production of milk by allowing cows to select when they would like to be milked.  

Livestock herding on large ranches now engages robots. Examples include robotic feeding stations for livestock 

(Bergerman et al., 2016), robotic milking stations and dairies (Holloway et al., 2014; Schewe and Stuart 2015); 

slaughterhouses (Nielsen et al., 2014), meatpacking (Barbut, 2014). Remote inspection of agricultural 

infrastructure, especially fences and watering systems have also been reported (Puri et al., 2017).  

x.  Traceability and Supply Chain Management – Block chain technology  

It is well known that consumers are increasingly becoming interested in where their food comes from and how it 

is produced. The adoption of AI in the food supply chains (FSC) can address unique challenges of food safety, 

quality and wastage by improving transparency and traceability  

(Leung et al., 2021; Dora et al., 2022). There have been successful experiences regarding the integration of 

blockchain with AI techniques for product traceability improvement (Wamba and Queiroz, 2020). Blockchain can 

connect all aspects of the supply chain from producer to consumer and allow for food traceability and safety. 

From an agriculture and food perspective, offering this type of information to consumers will become a 

competitive advantage. 

On a national scale, advanced logistics, transportation, storage, and processing are also crucial for making sure 

that food goes from where it grows in abundance to where it does not (Elferink, and Schierhorn, 2016). AI can 

significantly help trading companies to have a much greater impact on food security, because they source and 

distribute our staple foods and the ingredients (Allen, 1999). The strategic grain reserves agencies can leverage 

on data and AI to store periodically produced grains and oilseeds so that they can be consumed all year, and they 

process soft commodities so that they can be used further down the value chain. 

xi.  Farm management: optimisation of farming operations and decisions  

Precision agriculture (PA) is seen today as a key technological solution enabling the more efficient use of 

agricultural resources (Nikki, 2015; Linaza et al., 2021). The goal is the increase of farmers’ profits by improving 

harvest and/or quality yields, while reducing inputs, and the negative impact of farming on the environment, e.g., 

such that stems from the over-application of pesticides and fertilizers, and inefficient irrigation. 

The emergence of new technological trends like AI enables farmers to take a data-driven approach to collect and 

analyse large amounts of data to gain knowledge about the real-time status of their fields to improve farm yield 

and mitigate risks from weeds, pests, and diseases. Based on multiple parameters like soil condition, weather 

forecast, type of seeds and infestation in a certain area and so on, cognitive solutions make recommendations to 

farmers on the best choice of crops and hybrid seeds (Sarangi et al., 2020).  The recommendation can be further 

personalized based on the farm’s requirement, local conditions and data about successful farming in the past. 
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External factors like marketplace trends, prices or consumer needs may also be factored into enable farmers take 

a well-informed decision. 

AI can optimize and carry out particular activities such as planting and harvesting, increasing productivity, 

improving working conditions and using natural resources more efficiently. Digital technologies being used for 

precision farming gather data from farmers and public data sources evaluate by algorithms and provide the inputs 

to aid production and increase the farmer’s return on investment. Thus, they provide insights on what to plant and 

the best time for farming to yield good proceeds. As the machine learning system gets more input on new data, 

and trains on them it becomes stronger and more effective, the system can identify abnormal crop conditions or 

farming situations before what the human eye can detect them. The intelligence generated by the system also 

make proactive and real-time decisions possible to prevent future issues (Evans et al., 2017). 

4. AI IN NIGERIA’S AGRICULTURE: THE POTENTIALS   

Currently, the yield gap—the difference between a crop’s potential yield and actual yield— exceeds 76 percent 

for many crops in Nigeria (Babatunde et al., 2017; Rong et al., 2021). There are therefore enormous potentials 

for improvement in farm productivity in the country. AI can help meet rising demand for food and support a more 

inclusive and sustainable food system by enhancing the resilience of farming methods; reducing the cost of inputs 

and services to underserved farmers; and improving market access to facilitate smallholder farmer integration and 

achieving food security in Nigeria. Major contributions are expected from following areas: 

i.  Finding market opportunities for farmers   

Farmers can increase their income by finding market opportunities where they can compete on their skills and 

quality of product rather than by just offering the lowest price (Macharia et al., 2016; Fearne and Hughes, 1999).  

AI-enabled platforms can give smallholder farmers the information they need to connect directly to buyers of 

their produce, reducing food waste and increasing farm income. AI can also help address the market failures by 

improving traceability to prove the origin and quality of produce, which is needed to secure supply contracts and 

access markets. 

Fodlocker, a Nigerian start-up is using AI to guarantee markets for smallholder farmers and improve procurement 

efficiencies for large buyers (Alawode, 2019). The company, a foodstuff and grocery aggregator uses deep 

learning for forecasting demand for farm produce and consumer goods. For farmers, the platform enables access 

to a fairly-priced, transparent, mobile marketplace. For vendors, the benefit is increased reliability in sourcing 

high quality produce and for farmers, better returns. Applications can be developed to help farmers with low 

levels of literacy manage issues with little training required. For example, farmers could upload pictures of 

infected and diseased crops (using their internet enabled phones), and then get advice or solution to their pest and 

disease control challenges. 

ii.  Mitigating food losses  

Wasted food, simply defined, is uneaten edible food, largely generated at the consumer level either at or away 

from home (Stangherlin and de-Barcellos 2018). Food waste epitomizes an unsustainable system of food 

production and consumption (Martin-Rios et al., 2021). Globally, estimates of annual food losses that occur from 

farm to fork are as much as one third of annual global food production, or about 1.3 billion tons (FAO 2019). In 

emerging markets like Nigeria, greater percentages of losses take place: they occur throughout the stages of 

production, postharvest handling, storage, and processing stages. AI can help by designing systems that prevent 

edible food from being thrown away (Tavill, 2020). 

Digital applications are proving to be a saviour for reducing significant amount of food waste and  

helping to provide that food to the needy ( Tolentino, 2019;  Chaturvedi et al., 2020).  Frank (2022)  
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presents a simple, low-cost approach, using an electronic learning management system to connect college students 

with access to desirable food that would otherwise have been wasted. At the national levels, Nigeria can employ 

the large data gathering and information processing systems based on AI to get insights into the country’s annual 

estimates of food mass flows, including imports, exports, distribution, consumption, surplus food production, and 

final disposal. Thus the uptake and redistribution of surplus food can be carried out as a potential food waste 

prevention strategy as it is done in other places (Facchini et al., 2018; Wetherill, 2019). 

AI works with data, for example, those produced by different sub-systems that comprise a food supply chain 

(FSC), such as farms, food industries, distribution centres and retail stores, collected as food product transactions 

occurrences or by sensor based tools, equipment and fashion solutions across the FSC. For instance, AI in the 

food supply chain (FSC), along with technologies, such as Industry 4.0, the Internet of Things (IoT), the Global 

Standards one (GS1) labelling schemes and other emergent technologies, such as blockchain, can provide a basis 

for integrating the food value chain by sharing FSC transactions via a distributed trustworthy platform.  This 

potentially enables the realisation of the circular food supply chain goals (CFS) (Ramadoss et al., 2018; Valente, 

2022).   

Already, there are apps managing food usage across industries – foods and beverages, hospitality  

etc., with a view to minimising wastages. They  provide the user with food supply and location  

knowledge; improve the user's food literacy; and facilitate social food sharing of excess food. 

Examples include FoodScan (Sainz-De-Abajo et al., 2020) which is food monitoring app that works by scanning 

the groceries receipts. Others are Fridge Pal, LeftoverSwap and EatChaFood  

(Farr-Wharton et al., 2014). Consumers’ preference for these apps is generally encouraging (Tribhuvan, 2020). 

There are also apps that manage food stores and warehouses by real time remote monitoring (through sensors) 

and predicting storage conditions and suggesting preventive actions (Dey, 2018). Many of these apps can be 

applied, particularly by big distribution companies, with some cultural modifications, to the Nigerian situation. 

iii.  Climate Smart agriculture   

A critical developmental challenge is that agriculture both contributes to and will be fundamentally affected by 

climate change. Land use, including deforestation for arable land, and the forestry industry, account for 28 percent 

of net greenhouse gas emissions, while climate change affects the availability of, access to, and stability of the 

global food system (Tubiello et al., 2013). The challenge in meeting food demand and transporting food across 

markets sustainably cannot be solved through business-as-usual farming practices.  

  

Climate-smart agriculture (CSA) is an integrated approach to managing landscapes—cropland, livestock, forests 

and fisheries--that address the interlinked challenges of food security and climate change (2013; Gulzar et al., 

2020). CSA targets three objectives: (i) sustainably increasing agricultural productivity to support equitable 

increases in farm incomes, food security, and development; (ii) adapting and building resilience of food systems 

to climate change; and (iii) reducing greenhouse (GHG) emissions from agriculture (Kurgat et al., 2020). 

Interventions ranging from climate information services to field management have potential to achieve these goals 

(Khatri-Chhetri et al., 2016; Nyasimi et al., 2017). 

There is a need for policies, infrastructures and considerable investments to build the financial and technical 

capacity of farmers (especially small holders) to enable them to generate economic rural growth and ensure food 

security. First, there is a need for diversified cropping systems in view of climate related risks. AI, using weather 

data and other metrics such as market information can assist in decision of what crops or animals to raise. There 

is a need to develop a crop insurance scheme which makes it different from earlier schemes: farmers’ data is 
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correctly captured the insurance firms can have information such as the GIS-derived locations of such farms. AI 

can also come in to ensure that the government assisted input supply schemes – e.g. supply of fertilizers, farm 

chemicals, tractor services, is transparent. 

iv.  Extending products and services to underserved farmers.  

AI can be leveraged to deliver targeted, personalized and relevant insights and recommendations to farmers (Cook 

and O'Neill, 2020, Bicksler et al., 2022). Many Nigerian farmers lack access to affordable financial products 

because of the significant time and cost required to price their risk and collateral, as well as the difficulty of 

serving farmers in rural and remote areas. Technological advancements in satellite weather data collection and 

the wider adoption of mobile technology can dramatically reduce these costs, facilitating the extension of financial 

products to farmers (Mhlanga, 2021). 

Machine learning platforms are increasingly being employed by lenders to generate credit scores to help farmers 

access the microloans and insurance needed to upgrade their inputs to production, and this includes farmers 

without traditional collateral or bank accounts (Kumar et al., 2021). 

Apps can be created and platforms set up to allow farmers to upload photos of crops and pests or disease, which 

are processed alongside satellite, geospatial, and other data sources, to estimate a farmer’s collateral or to make 

estimates of the farmer’s individual financial health and creditworthiness (Chandra and Collis, 2021; 

Kumarathunga et al., 2022).  

5. CHALLENGES TO AI IMPLEMENTATION IN NIGERIA  

Although AI implementation varies across nations, it is still in the initial phase in developing countries such as 

Nigeria (Sharma et al., 2021). Challenges such as data quality, privacy and lack of skilled workforce limit the 

scope of AI implementation in emerging economies, especially in agriculture. Farmers tend to perceive AI as 

something that applies only to the digital world. They might not see how it can help them work the physical land.  

Their resistance may be caused by a lack of understanding of the practical application of AI tools. New 

technologies often seem confusing and unreasonably expensive because solution providers fail to clearly explain 

why their solutions are useful and how exactly they should be implemented. Although AI can be useful, there is 

still a lot of work to be done by technology providers to help farmers implement it the right way.  Some serious 

constraints readily can be highlighted: 

i.) Inadequate Technology Infrastructures:    

AI requires a proper technology infrastructure for it to work. Unlike acquiring a tractor, AI is not something 

tangible but a set of technologies that are automated through programming. It needs other technology to actually 

work. In other words, to reap all the benefits of AI, farmers first need a technology infrastructure. Farmers need 

to understand that AI is only an advanced part of simpler technologies for processing, gathering, and monitoring 

field data. One of the critical requirements for the application of AI and related IT technologies to any nation’s 

economic sectors is power supply. Nigeria has power supply deficits, about 80% of the population still does not 

have access to on-grid electricity. Equally critical is internet connectivity.  According to the World Economic 

Forum (World Economic Forum, 2020) internet users stand at 25.7% of the population (ranked 107th out of 140 

countries in 2019). However, the country set its own target of connecting 30% of the population to broadband, 

reaching 33% in early 2019, representing 65 million citizens. A new target of 70% has been set by the Federal 

Government for 2024 (Osuagwu and Elebeke, 2019). 

ii.) Lack of experience with emerging technologies:   

It may be hard to sell the technology in areas where agricultural technology is not common. Farmers will most 

likely need help adopting it.  Perhaps, the most important condition for rapid adoption of AI technologies and 
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reaping the associated rewards is a well-educated and motivated workforce with the right skills. There should 

therefore be improved efforts to improve of literacy in general, and computer literacy in particular. 

iii.) Privacy and security issues:   

Since there are no clear policies and regulations around the use of AI, not just in agriculture but in general, 

precision agriculture and smart farming raises various legal issues that often remain unanswered. Privacy and 

security threats like cyber-attacks and data leaks may cause farmers serious problems. Unfortunately, many farms 

are vulnerable to these threats. The Nigeria Digital Agriculture Strategy 2020-2030 (NITDA, 2020) is a welcome 

development. It is hoped that there will be commitments to its implementation and efforts should be made to 

address these challenges.  

iv.) Manpower for AI development:   

AI is an emerging technology, there are few who possess the skills or training necessary for AI development. In 

rural areas, the basic issues is lack of digital skills as many people are illiterate. This is made more difficult by a 

mismatch of skills and a ‘brain drain’ of highly-skilled people to other countries. With talent being one of the 

biggest challenges to AI, it not surprising that companies and countries are leaving no stone unturned when 

sourcing people and skills. 

v.) Legal Issues:   

One of the newest challenges of AI include the recent legal concerns being raised that organizations need to be 

wary of AI. If AI is collecting sensitive data, it might be in violation of state or federal laws, even if the information 

is not harmless by itself but sensitive when collected together. Legal and ethical issues of AI which Nigeria should 

plan for include privacy and surveillance breeches together with introducing bias and discrimination into decision 

making. Express policies are needed that will meet up with the technologies emerging under the fourth industrial 

revolution. 

6. CONCLUSIONS  

AI has become pervasive in today’s world, therefore, the working knowledge of this technology is required to 

stay relevant in most fields, agriculture inclusive.  The present review provided a comprehensive understanding 

of AI and intelligent methodologies which can be employed to tackle several challenges in agriculture based 

businesses. Additionally, the paper focused on the ideas of applying AI to Nigeria’s agriculture, considering the 

opportunities and possible challenges. AI-powered solutions have been applied in areas such as farm, crops and 

animal monitoring, diseases and pest detection, intelligent farm chemicals application, automatic weeding, aerial 

survey and mapping, smart irrigation, intelligent produce grading and sorting, among others. Obstacles of 

inadequate technology infrastructure such as broadband internet access, and paucity of a workforce with the right 

skills exist in Nigeria were identified. Nigeria must, with continuous efforts, overcome these challenges if the 

country hopes to be competitive in her agriculture. 
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