Research Journal of Agriculture (RJA)

100. BIOTECHNOLOGICAL METHODS FOR IMPROVING THE NUTRITIVE VALUE OF RUMINANT FEEDS: A REVIEW

Authors

  • Mahgoub Gaafar El Hag Department of Animal Production, Faculty of Agriculture, Alzaem Alazhari University, Khartoum -Sudan

Abstract

Biotechnology is an important and broad science or group of sciences that has been successfully applied in many fields for the betterment of human life, including cell biology, environmental sciences, animal science, food science, medicine, and pharmacy. Modern Biotechnology has been successfully used in developed countries to enhance animal production and productivity and has resulted in increasing the quantity and quality of animal products. Biotechnology provides cutting-edge experiences that depend on the best scientific practices, innovative research, and applied technology. An increase in the world population and demand for animal products necessitates that developing countries must implement and adopt more modern biotechnological means in addition to effective traditional methods to improve the quality of available fibrous livestock feeds and the nutritional status and productivity of ruminants. Currently, the use of biotechnology in developing countries is limited to animal breeding, health care, and the conservation of animal feeds and products. Increased use of biotechnological methods via manipulations of rumen fermentation, recombinant DNA, removal of toxic compounds in feeds, use of exogenous enzymes etc. coupled with use of appropriate traditional methods will improve the quality of fibrous-animal feeds and the productivity of ruminants in developing countries.

Keywords:

Biotechnology, fibrous feeds, recombinant-DNA, productivity, ruminants, developing countries, quality

Published

2024-10-01

DOI:

https://doi.org/10.5281/zenodo.13870994

Issue

Section

Articles

How to Cite

Mahgoub , G. E. H. (2024). 100. BIOTECHNOLOGICAL METHODS FOR IMPROVING THE NUTRITIVE VALUE OF RUMINANT FEEDS: A REVIEW. Research Journal of Agriculture (RJA), 15(9). https://doi.org/10.5281/zenodo.13870994

References

Aasiwal, D. P., Meena, B. S., Mahesh, M. S., et al. (2015). Effect of formaldehyde-treated rapeseed and cottonseed cakes in milk yield and composition at various stages of lactation and parity in Jersey cows. Journal of Animal Research, 5(1), 15-20. https://www.semanticscholar.org/paper/Effect-of-Feeding-Formaldehyde-Treated-Rapes.

Abdelsalam, E., Samer, M., Attia, Y. A., et al. (2016). Comparison of nanoparticle effects on gas and methane production from anaerobic digestion of cattle dung slurry. Renewable Energy, 87, 592-598. https://doi.org/10.1016/j.renene.2015.10.053

Adeymo, S. M., & Onilude, A. A. (2013). Enzymatic reduction of anti-nutritional factors in soyabean fermentation by Lactobacillus plantarum isolates fermenting cereals. Nigerian Food Journal, 31(2), 84-90. https://doi.org/10.1016/S0189-7241(15)30080-1

Akinfemi, A., Adu, O. A., & Doherty, F. (2009). Assessment of the nutritive value of fungi-treated maize cob using in vitro gas production. Livestock Research for Rural Development, 21(11). https://lrrd.cipav.org.co/lrrd21/11/akin21188.htm

Alugongo, G. M., Xiao, J., Wu, Z., et al. (2017). Review: Use of yeast of Saccharomyces cerevisiae origin in artificially raised calves. Journal of Animal Science and Biotechnology, 8(34). https://doi.org/10.1186/s40104-017-0165-5

Allen, I. H. (2017, March). Impact of animal-source food consumption on availability of critical nutrients in breast milk for newborn infants. In Nurturing Development: Improving Human Nutrition Using Animal-Source Foods. Symposium conducted at the University of Florida, Gainesville, FL.

Anil, Y., Yadav, S., Anand, V. M., Chouraddi, R., et al. (2022). A review on the role of exogenous fibrolytic enzymes in ruminant nutrition. Current Journal of Applied Science and Technology, 41(36). https://journalcjast.com/index.php/cjast/article/view/3966

Arce-Servantes, O., Mendoza, G. D., Hernandez, P. A., et al. (2013). The effects of a lignocellulolytic extract of Fomes sp. EUMI on the intake, digestibility, feed efficiency, and growth of lambs. Animal Nutrition and Feed Technology, 13, 363-372. https://www.indianjournals.com/ijor.aspx?target=ijor:anft&volume=13&issue=3&article=003

Asmare, B. (2014). Biotechnological advances for animal nutrition and feeding improvements. World Journal of Agricultural Research, 2(3), 115-118. https://pubs.sciepub.com/wjar/2/3/5/

Awulachew, M. T. (2022). Application of biotechnology in human food processing and animal feed. International Journal of Food Science, Nutrition and Dietetics, 11, 575-580. https://scidoc.org/IJFS.php

Beigh, Y. A., Ganai, A. M., & Ahmad, H. A. (2017). Prospects of a complete feed system in ruminant feeding: A review. Veterinary World, 10, 424-437. https://doi.org/10.14202/vetworld.2017.424-437

Bhasker, T. V., Nagalakshmi, D., & Rao, D. S. (2013). Development of appropriate fibrolytic enzyme combination for maize stover and its effect on rumen fermentation in sheep. Asian-Australasian Journal of Animal Science, 26, 945-951. https://doi.org/10.5713/ajas.2012.12590

Bodahewa, A. P., Weerasinghe, W. M. P. B., & Palliyeguru, M. W. C. A. (2014). Effects of feeding total mixed ration (TMR) on the production performance of dairy cows. Sri Lanka Veterinary Journal, 11(Supplement).

Chahal, U. S., Niranjan, P. S., & Kumar, S. (2008). Handbook of general animal nutrition (1st ed.). International Book Distributing Co.

Chang, H. (1996). Genetic engineering to enhance microbial interference and related therapeutic applications. Nature Biotechnology, 14, 423-431. https://www.nature.com/articles/nbt0496-444

Centner, T. J. (2016). Recent government regulations in the United States seek to ensure the effectiveness of antibiotics by limiting their agricultural use. Environmental International, 94, 1-7. https://doi.org/10.1016/j.envint.2016.04.018

Coppock, C. E., Woelfel, C. G., & Belyea, R. L. (1981). Forage and feed testing programs, problems, and opportunities. Journal of Dairy Science, 64, 1625-1633. https://doi.org/10.3168/jds.S0022-0302(81)82736-1

Chharang, D., Saini, V. P., Chopra, D., et al. (2019). Current and future perspectives regarding biotechnological applications in livestock nutrition: A review. International Journal of Current Microbiology and Applied Sciences, 8(6), 973-982. https://doi.org/10.20546/ijcmas.2019.806.118

Hag, E. L. (2001). Some options for improving desert sheep productivity under range conditions in North Kordofan, Sudan. (Unpublished PhD thesis). University of Khartoum, Sudan.

El Hag, M. G., Al-Merza, M. A., & Al Salti, B. (2002). Growth in the Sultanate of Oman of small ruminants given date byproducts-urea multinutrient blocks. Asian-Australasian Journal of Animal Science, 15(5), 671-674. https://doi.org/10.5713/ajas.2002.671

El Hag, M. G., El Khangeri, H. H., & Al-Merza, M. A. (2002). Milk production in the UAE Sultanate of Oman from dairy cows given date byproducts (urea) multinutrient blocks. Asian-Australasian Journal of Animal Science, 15, 371-376. https://www.cabidigitallibrary.org/doi/full/10.5555/20023042057

Hag, E. G., Mohammed, B. A., Sayed, M. A., et al. (2023). Effect of total mixed rations versus traditional feeding of concentrate and roughage rations on dairy cattle performance in Sudan. Arab Universities Journal of Agricultural Sciences, 31, 223-230. https://doi.org/10.21608/AJS.2023.226641.1531

El Jeni, R., Dittoe, D. K., Olson, E. G., et al. (2021). Probiotics and potential applications in poultry production systems. Poultry Science, 100, 101156. https://doi.org/10.1016/j.psj.2021.101156

Fesseha, H., Degu, T., & Getachew, Y. (2020). Nanotechnology and its application in animal production: A review. Veterinary Medicine – Open Journal, 5, 43–50. https://doi.org/10.17140/VMOJ-5-148

Forsberg, C. W., Cheng, K. J., Krell, P. J., et al. (1993). Establishment of rumen microbial gene pools and their manipulation to benefit digestion by domestic animals. In Proceedings of the Seventh World Conference on Animal Production (Vol. 1, pp. 281–316). Edmonton, Alberta. https://www.cabidigitallibrary.org/doi/full/10.5555/19931467219

Fuller, R. (1989). Probiotics in man and animals. Journal of Applied Bacteriology, 66, 365-378. https://europepmc.org/article/med/2666378

Garg, M. R., & Sherasia, P. L. (2010a). Production of urea-molasses mineral blocks in a process developed by the Dairy Board of India. In H. P. S. Makkar (Ed.), Success and failures with animal nutrition interventions (pp. 131–141). Springer. https://doi.org/10.1007/978-94-007-0786-4_10

Garg, M. R., & Sherasia, P. L. (2010). Rumen by-pass protein enhancing productivity in dairy animals. In H. P. S. Makkar (Ed.), Success and failures with animal nutrition practices and technologies in developing countries (pp. 29–35). FAO Animal Production and Health Proceedings No. 11. FAO.

Garag, M. R., Sanyal, P. K., & Bhanderi, B. M. (2007). Urea-molasses mineral block supplementation in the ration of dairy animals—Indian experiences. In H. P. S. Makkar, M. Sanchez, & W. M. Speedy (Eds.), Feed supplementation blocks: Urea-molasses multi-nutrient blocks: Simple and effective feed supplement technology for ruminant agriculture (pp. 35–37). FAO Animal Production and Health Paper No. 164. FAO.

Gelaye, Y. (2023). Application of nanotechnology in animal nutrition: A bibliographic review. Animal Husbandry and Veterinary Science. Cogent Food and Agriculture. https://doi.org/10.1080/23311932.2023.2290308

George, A. (2018). Antimicrobial resistance, trade, food safety, and security. One Health, 5, 6–8. https://doi.org/10.1016/j.onehlt.2017.11.004

Grunwald, P. (2017). Biocatalysis and nanotechnology. CRC Press. https://www.routledge.com/Biocatalysis-and-Nanotechnology/Grunwald/p/book/9789814613699

Gupta, S., Mohini, M., Malla, B. A., et al. (2019). Effects of monensin feeding on performance, nutrient utilization, and enteric methane production in growing buffalo heifers. Tropical Animal Health and Production, 51(5), 859–866. https://doi.org/10.1007/s11250-018-1766-5

Hassan, S. A., & Almaamory, Y. A. (2019). Effect of enzyme treatments for some roughages on average gain performance, feed conversion ratio, and nutrient digestibility of Awassi lambs. Plant Archives, 19(1), 993–1002. http://plantarchives.org/PDF%2019-1/993-1002%20(4746).pdf

Hill, E. K., & Li, J. (2017). Current and future prospects for nanotechnology in animal production. Journal of Animal Science and Biotechnology, 8, 1–13. https://doi.org/10.1186/s40104-017-0157-5

Hussain, H. N., Khanum, S. A., Hussain, M., et al. (2014). Effect of fibrolytic enzymes produced from improved mutant of Chaetomium thermophile DG-76 on the performance of Beetal-dwarf crossbred goats. Pakistan Veterinary Journal, 34(4), 394–398.

Kamble, R. D., & Jadhav, A. R. (2012). Isolation, identification, and screening of potential cellulase-free xylanase producing fungi and its production. African Journal of Biotechnology, 11(56), 14175–14181. https://doi.org/10.5897/AJB11.2356

Karunanayaka, R. H. W. M., Liyanage, R. T. P., Nayananjalie, W. A. D., et al. (2022). Feeding total mixed ration (TMR) on production and reproductive performance of lactating dairy cows: A review. Agricultural Reviews, 43(1), 29–37. https://doi.org/10.18805/ag.R-208

Lazzaro, B. P., Zasloff, M., & Rolff, J. (2020). Antimicrobial peptides: Application informed by evolution. Science, 368(6490), eaau5480. https://doi.org/10.1126/science.aau5480

Malmuthuge, N., & Guan, L. L. (2017). Understanding host-microbial interactions in the rumen: Searching the best opportunity for microbiota manipulation. Journal of Animal Science and Biotechnology, 8(8). https://doi.org/10.1186/s40104-016-0135-3

Mansilla, F. I., Miranda, M. H., Ficoseco, C. A., Obregozo, M., Villar, M. D., Nader-Macias, M. E. F., & Vignolo, G. M. (2024). Use of probiotic lactobacilli as an alternative to monensin in beef feedlot cattle. Academia Environmental Sciences and Sustainability. https://doi.org/10.20935/AcadEnvSci6162

Marappan, G., Beulah, P., Kumar, R. D., et al. (2017). Role of nanoparticles in animal and poultry nutrition: Modes of action and applications in formulating feed additives and food processing. International Journal of Pharmacology, 13(7), 724–731. https://doi.org/10.3923/ijp.2017.724.731

McDonald, P., Edwards, R. A., Greenhalgh, J. F. D., Morgan, C. A., Sinclair, L. A., & Wilkinson, R. G. (2010). Animal Nutrition. Pearson Books. https://www.pearson.com/en-gb/subject-catalog/p/animal-nutrition/P200000007549/9781292251677

Mohammad, D. E. A., Borhami, B. E., El-Shazly, K. A., et al. (2013). Effect of dietary supplementation with fibrolytic enzymes on the productive performance of early lactating dairy cows. Journal of Agricultural Sciences, 5(1), 146–155. https://www.ccsenet.org/journal/index.php/jas/article/view/26140

Mohamed, H. I., El Hag, M. G., & Abdalla, H. I. (2020). Evaluation of feedlot performance and carcass characteristics of growing calves using high fiber diets supplemented with different nitrogen sources. Sudanese Journal of Agricultural Sciences, 6, 1–17. https://www.researchgate.net/publication/349304635-Evaluation-of-feedlot-performance-and-carcass-characteristics-of-growing-calves-using-high-fiber-diets-supplemented-with-different-nitrogen-sources-1-Evaluation-of-feedlot-performance

Mohammad, M. E. M. A., Gorgulu, M., & Goncu, S. (2017). The effects of total mixed and separate feeding on lactational performance of dairy cows. Asian Research Journal of Agriculture, 5(1), 1–7. https://doi.org/10.9734/ARJA/2017/33663

Morris, V. J. (2014). Foods, materials, technologies, and risks. In Encyclopedia of Food Safety. https://www.sciencedirect.com/science/article/pii/B9780123786122000798

Newbold, C. J., de la Fuente, G., Belanche, A., et al. (2015). The role of ciliate protozoa in the rumen. Frontiers in Microbiology, 6, 1–14. https://doi.org/10.3389/fmicb.2015.01313

Nguyen, S. H., Barnett, M. C., & Hegarty, R. S. (2015). Use of dietary nitrate to increase productivity and to reduce methane production of defaunated and faunated lambs consuming protein deficient chaff. Animal Production Science, 56(2), 290–297. https://doi.org/10.1071/AN15525

Nguyen, S. H., Bremner, G., Cameron, M., et al. (2016). Methane emissions, ruminal characteristics, and nitrogen utilization changes after refaunation of protozoa-free sheep. Small Ruminant Research, 144, 48–55. https://doi.org/10.1016/j.smallrumres.2016.08.002

Nguyen, S. H., Nguyen, H. D. T., & Hegarty, R. S. (2020). Defaunation and its impact on ruminal fermentation, enteric methane production, and animal productivity. Livestock for Rural Development, 32(4), 1–9. https://www.Irrd.org/Irrd32/4/nghson32060.html

Nguyen, S. H., Nguyen, H. D. T., Bremner, G., et al. (2018). Methane emissions and productivity of defaunated and refaunated sheep while grazing. Small Ruminant Research, 161, 28–33. https://doi.org/10.1016/j.smallrumres.2018.02.004

Omietimi, H. B., Siyanbola, T. T., & Usman, T. J. (2022). Nutritional strategies to reduce enteric methane emissions in ruminants: A review. Journal of Agriculture and Environment for International Development, 116(2), 335–346. https://doi.org/10.12895/jaeid.2022.3329

Preston, T. R. (1995). Tropical animal feeding: A manual for research workers (FAO Animal Production and Health Paper No. 126). FAO.

Pundir, C. S. (2015). Enzyme nanoparticles: Preparation, characterization, and applications. Micro and Nano Technologies series. Elsevier. https://www.sciencedirect.com/book/9780323389136/enzyme-nanoparticles

Quansah, E. S., & Makkar, H. P. S. (2012). Use of lesser-known plants and plant parts as animal feed resources in tropical regions (Animal Production and Health Working Paper No. 8). FAO. https://www.feedipedia.org/content/fao-2012-emmanuel-s-quansah-harinder-ps-makkar-animal-production-and-health-working-paper-no

Rashid, S., Tahir, S., Akhtar, T., et al. (2023). Bacillus-based probiotics: An alternative for the treatment of salmonellosis in poultry. Pakistan Veterinary Journal, 43(2), 167–173. http://pvj.com.pk/pdf-files/22-430.pdf

Robinson, J. J., Ashworth, C. J., Rooke, J. A., et al. (2006). Nutrition and fertility in ruminant livestock. Animal Feed Science and Technology, 126(3-4), 259–276. https://pure.sruc.ac.uk/en/publications/nutrition-and-fertility-in-ruminant-livestock

Rufino, L. M. D. A., Detmann, E., Gomes, D. I., et al. (2016). Intake, digestibility and nitrogen utilization in cattle fed tropical forage and supplemented with protein in the rumen, abomasum, or both. Journal of Animal Science and Biotechnology, 7, 1–10. https://link.springer.com/article/10.1186/s40104-016-0069-9

Schwartz, H. J. (1992). Animal nutrition in relation to application of biotechnological procedures. Discussion paper presented at the symposium on: Potential and limitations of biotechnology for livestock breeding and reproduction in developing countries, Mariense, Germany, 14th to 16th May 1992.

Sujani, S., & Sersinhe, R. T. (2015). Exogenous enzymes in ruminant nutrition: A review. Asian Journal of Animal Sciences, 9(2), 85–99. https://doi.org/10.3923/ajas.2015.85.99

Tazehabadi, M. H., Algburi, A., Popov, I. V., et al. (2021). Probiotic bacilli inhibit salmonella biofilm formation without killing planktonic cells. Frontiers in Microbiology, 12, 615328. https://doi.org/10.3389/fmicb.2021.615328

Thakur, S. S., Verma, M. P., Ali, B., et al. (2010). Effect of exogenous fibrolytic enzymes supplementation on growth and nutrient utilization in Murrah buffalo calves. Indian Journal of Animal Sciences, 80(11), 1217–1219.

Tewoldebrhan, T. A., Appuhamy, J. A. R. N., Lee, J. J., et al. (2017). Exogenous β-mannanase improves feed conversion efficiency and reduces somatic cell count in dairy cattle. Journal of Dairy Science, 100(1), 244–252. https://doi.org/10.3168/jds.2016-11017

Tiwari, M. R., Jha, P. K., Pant, S. R., et al. (2018). Effect of bypass protein supplement on milk production in Jersey cows. Bangladesh Journal of Animal Science, 47(2), 98–104.

Tomar, K., Tiwari, S., Singh, D., et al. (2022). Feeding management of ruminant livestock. In Feeding management of ruminant livestock (Chapter 7). https://www.researchgate.net/publication/363847193-Feeding-Management-of-Ruminant-Livestock

Tona, G. O. (2018). Current and future improvements in livestock nutrition and feed resources. IntechOpen. https://www.intechopen.com/chapters/58928

Vargas, J. M., Mendoza, G. D., Rubio-Lozano, M. L. R. S., et al. (2013). Effect of exogenous fibrolytic enzymes on the carcass characteristics and performance of grain-finished steers. Animal Nutrition and Feed Technology, 13, 435–439.

Walli, T. K. (2010). Urea treatment of straws. In H. P. S. Makkar (Ed.), Success and failures with animal nutrition practices and technologies in developing countries (pp. 21–24). FAO Animal Production and Health Proceedings No. 11. FAO. https://www.fao.org/4/i2270e/i2270e00.pdf

Wanapat, M., Kang, S., & Polyorach, S. (2013). Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. Journal of Animal Science and Biotechnology, 4, 1–11. http://pubs.scipub.com/wjar/2/3/5

Yamaguchi, S. (2017). The quest for industrial enzymes from microorganisms. Bioscience, Biotechnology, and Biochemistry, 81(1), 54–58. https://doi.org/10.1080/09168451.2016.124837

Similar Articles

<< < 2 3 4 

You may also start an advanced similarity search for this article.