EFFECT OF SPENT ENGINE OIL ON THE MORPHOLOGICAL GROWTH INDICES OF GROUNDNUT (ARACHIS HYPOGEA L.) IN KEFFI LOCAL GOVERNMENT AREA OF NASARAWA STATE.
Abstract
This study investigates the impact of spent engine oil (SEO) contamination on the morphological growth indices of Arachis hypogaea (groundnut) in Keffi, Nigeria. Groundnut, a vital crop for nutrition and economic sustainability, often faces challenges from soil pollutants, including hydrocarbons from used engine oil. The experiment involved cultivating groundnuts in soil treated with varying concentrations of SEO (0%, 3%, 6%, and 9%) to evaluate its effects on plant height, leaf dimensions, branch number, and yield. Results demonstrated a concentration-dependent decline in growth and yield, with the control group consistently outperforming polluted treatments. Interestingly, the 3% SEO treatment resulted in increased leaf length compared with the control, suggesting complex interactions at lower pollution levels. The findings underscore the harmful effects of SEO on crop productivity, emphasizing the need for proper waste management practices to protect agricultural resources. This research provides valuable insights into mitigating pollution’s impact on food security and sustainable farming
Keywords:
Groundnut, soil contamination, spent engine oil, morphological growth indicesDownloads
Published
DOI:
https://doi.org/10.5281/zenodo.14870637Issue
Section
How to Cite
License
Copyright (c) 2025 Maijarmiya M A, Ibrahim, H. A, Umar, Y. I

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abdulhadi, S. K., & Kawo, A. H. (2006). The effects of engine oil pollution on the growth and yield of Arachis hypogea L. and Zea mays L. African Scientist 7: 155-160.
Adenipekun, C. O., & Lawal, A. O. (2002). Oil-induced stress and stunted growth in plants. Environmental Monitoring and Assessment, 80(3), 297-309.
Adesodun, J. K., Atagana, H. I., & Maestri, E. (2010). The negative impact of oil contaminants on reproductive structures in plants. Environmental Monitoring and Assessment, 162(1-4), 183-190.
Agbogidi, O. M. Ilondu E. M., (2013). Effects of spent engine oil on the germination and seedling growth of Moringa oleifera (Lam.). Scholarly Journal of Agricultural Science Vol. 3(6), pp. 239-243.
Agbogidi, M. O. (2011a). Susceptibility of five cultivars of soybean (Glycine max) (L) Merr. Seeds to spent engine oil. Journal Science and Nature. 2(3): 447-451.
Agbogidi, O. M. (2010). Screening six cultivars of cowpea (Vigna unguiculata (L) Walp) for adaptation to soil contaminated with spent engine oil. Academic Arena
Agbogidi, O.M. and Ejemeta, O.R. (2005). Assessment of the effects of crude oil pollution on soil properties, germination, and growth of Gambaya albida (L). Uniswa Res. Journal of Agricultural Science and Technology. 8(2): 148- 155.
Akan, J. C., Abdulrahman, F. I., Sodipo, O. A., and Chiroma, T. M. (2011). Impact of oil contaminants on plant stature. African Journal of Biotechnology, 10(25), 4990-4996.
Akinyemi, A. J., Adesodun, J. K., & Maestri, E. (2012). Impact of oil pollutants on leaf morphology. Journal of Environmental Science and Health, Part B, 47(8), 769-776.
Akonye, L.A. and Onwudiwe, I. O. (2004). Potential use of sawdust and leaves of Chromolaena odorata to mitigate crude oil toxicity. Niger Delta Biologia. 4(2): 50- 60.
Anderson, C. and Lee, S.Y. (1995). Defoliation of the mangrove Avicennia marina in Hong Kong: Cause and consequences. Biotropica. 27:218-226.
Andrews, J. (1998). The Pepper Lady ‘s Pocket Pepper Primer. University of Texas Press, Austin. 190 pp.
Anoliefo, G. O., O. S. Isikhuemhen, and S. O. (2001). Small-scale industrial village in Benin City, Nigeria: Establishment, failure and phytotoxicity assessment of soils from the abandoned site. Water, Air, and Soil Pollution 131: 169–183.
Anoliefo, G.O and Vwioko, D.E (1995) Effects of spent lubricating oil on the growth of Capsicum annum and Lycopersicom esculentum Miller. Environmental Pollution 88: 361-364.
Anoliefo, G.O. and Edegbai, B.O. (2000). Effect of spent engine oil as a soil contaminant on the growth of two egg plant species: Solanum melongena L. and S. incanum. J. Agric. Fishery 1:21-25.
Anon (2003). Remediation Of Petroleum-Contaminated Media [online]. Bioremediation: An Alternative Tool. Available at [Accessed 15 June 2006].
Atagana, H. I. (2009). Hydrocarbons in engine oil interfere with cell division and elongation. International Journal of Environmental Science & Technology, 6(2), 229-234.
Atlas RM., (1977). Simulated Petroleum Biodegradation. Critical Rev. in Microbiol. 5 : 371-386.
Atuanya, E. I (1987). The effects of waste engine oil on the physical and chemical properties of soil. A case study of wastewater-contaminated delta soil in Bendel State. Nigerian Journal of Applied Science 5: 155–176.
Bini, C., Wahsha, M., Fontana, S., Maleci, L., and Wahsha, A. (2014). The effects of spet motor oil on the soil quality of wheat crop. International Journal of Environmental Science and Technology, 11(4), 1125-1134.
Chigbo, C., Batty, L., and Mulder, J. (2014). Assess the phytotoxicity of the lubricating oil used in soil. Journal of Environmental Management, 139, 112-118.
Chukwujindu, M. A., Iwegbue, E. S., & Nwaje, G. E. (2008). “Characteristic levels of total petroleum hydrocarbon in soil Profile of automobile mechanic waste dumps,” International Journal of Soil Science, 3: (1); 48-51.
Das, P. and Roychoudhury, A. (2014). Reactive oxygen species (ROS) and antioxidant response as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2(1), 53.
de Oliveira, A. A., C. V. Santos, F. C. Rego, A. S. de Souza, and A. B. (2017). Effects of air pollution on photosynthetic pigments and membrane damage in Psidium guajava L. and Capsicum annuum L. Air Quality, Atmosphere & Health, 10(1), 99-105.
Duke, J. A. (2008). Duke's Handbook of Medicinal Plants of Latin America. CRC Press. pp. 63-66.
Eje, B. E., Ekuma, O. E., & Isangedighi, I. A. (2019). Groundnut (Arachis hypogaea) Oil Extraction and Physicochemical Properties of the Oil. International Journal of Agricultural Sciences, 9(5), 1487-1491.
Ekudanyo, E. O., and Obuekwe, O. O. (2004). “Effect of Oil spill on soil physicochemical properties of a spill site in a Typical Udipsamment of Niger Delta basin of Nigeria,” Environmental Monitoring and Assessment, Springer Netherlands.; 60: (2); 235-249
Ekweozo, C. M., Okojun, J.I; Ekong, D.E. and Maxwell, J. R. (1988). Preliminary Organic Geochemical Studies of Samples from the Niger delta. Part 1: Analysis of Crude oils for Triterpenes. Chem. Geology (27): 11-28.
Ezemonye, L. I., Ogbeide, O. S., and Okieimen, F. E. (2010). Complex interactions among oil concentration, plant species, and soil conditions. Ecotoxicology and Environmental Safety, 73(5), 1073-1080.
Food and Agriculture Organization (FAO). (2013). FAOSTAT. http://faostat.fao.org/site/567/default.aspx. Accessed: 20-03-2021.
Garrett, H. (2004). Peanut (Arachis hypogaea). In Texas, gardening in the natural way. University of Texas. Retrieved from https://books.google.com.co/books
Giami, S. Y., and Sanni, L. O. (2011). Traditional and Nutritional Composition of Groundnut-Based Soup ‘Gbegiri’. Nigerian Food Journal, 29(1), 74-82.
Gruenwald, J., Brendler, T. and Jaenicke, C. (Eds.). (2007). PDR for Herbal Medicines. Montvale: Thomson PDR. pp. 575-577.
Gupta, A. K., Sinha, S., & Rai, U. N. (2019). Heavy metal accumulation in vegetables grown in wastewater-irrigated urban waste-land soils: A case study from India. Journal of Environmental Management 248, 109314–109314.
Hazel, W. (2005). Suck it up. Phytoremediation. Oganic Ade (online). Available online: http://ourgardengang.tripod.com/ Organic Ade.htm (Accessed 15 June, 2006).
Hisajima, S. (1992). Life Cycle of the Peanut (Arachis hypogaea L.) Plant in vitro. Bioscience, Biotechnology, and Biochemistry. 56(4): 543-546.
Hwang, J.Y., Wang, Y.T., Shyu, Y. and Wu, J.S. (2008). Antimutagenic and antiproliferative effects of roasted and defatted peanut dregs on human leukemic U937 and HL-60 cells. Phytotherapy Research. 22: 286–290.
Iwegbue, C. M. A. Nwajei, G. E. Arimoro, and F. O. (2007). ” Characteristic level of total petroleum hydrocarbon in soil, sediment and surface water of an oil impacted area in the Niger Delta. Pakistan Journal of Scientific and Industrial Research, vol. 50, no. 4, pp. 247-250.
Iwegbue, C. M. A., Agwogie, M. A., Nwajei, G. E., Eguavoen, O. I., and Isirimah, N. O. (2019). Environmental risk assessment of spent engine oil-contaminated soil from mechanic workshop sites in Delta State, Nigeria. Environmental Geochemistry and Health, 41(6), 2777-2794.
Janila, P., Variath, M. T., Pandey, M. K., Desmae, H., Motagi, B. N., Okori, P., ... & Radhakrishnan, T. (2019). Genomic tools for groundnut breeding programs: status and perspectives. Frontiers in Plant Science, 10, 991.
Kassa, M. T., Yeboah, S. O., & Bezabih, M. (2009). Profiling peanut (Arachis hypogea L.) accessions and cultivars for oleic acid and yield in Botswana. Euphytica. 167: 293–301.
Kotzamanidis, S. (2006). The First Peanut (Arachis hypogaea L.) crosses in Greece and transgressive segregation on yield characteristics of pedigree selected accessions. Pakistan Journal of Biological Sciences. 9: 968–973.
Krapovickas, A. and Gregory, W. C. (1994). Taxonomia del genera Arachis (Leguminosae). Bonplandia. 8: 1–186.
Kumar, A., Dushenkov, V., Motto, H., & Raskin, I. (2018). Oil-induced stress impeding flower development and subsequent fruit formation. Environmental Science & Technology, 32(1), 85-89.
Li, Y., Li, P., Wang, C., Zhou, Q., & Sun, Y. (2019). Toxicity of the used lubricating oil: A comprehensive review. Science of the Total Environment, 650, 2395-2406.
Maestri, E., Marmiroli, M., & Visioli, G. (2017). Complex interactions among oil concentration, plant species, and soil conditions. Environmental Science and Pollution Research, 24(3), 2261-2269.
Mills, G., Pleijel, H., & Braun, S. (2018). Ozone impacts on crops and their consideration in crop models. European Journal of Agronomy, 100, 19-34.
Mozingo, R. W., O’Keefe, S. P., Sanders, T. H., & Hendrix, K. W. (2004). Improving the shelf life of roasted and salted inshell peanuts using high-oleic fatty acid chemistry. Peanut Science. 31: 40–45.
Odjegba, V. J., & Sadiq, A. O. (2002). Effects of spent engine oil on the growth parameters, chlorophyll, and protein levels of Amaranthus hybridus L. Environment. 22: 23-28.
Ogboghodo, I. A., Okoh, B. E., and Osuji, L. C. (2012). Inhibitory effects of oil pollutants on leaf initiation and growth. Environmental Monitoring and Assessment, 184(11), 6875-6883.
Ogunsola, O., and Aina, O. O. (2012). Groundnut Production in Nigeria: Challenges and Prospects. Journal of Agriculture and Veterinary Science, 2(1), 39-44.
Okoye, B. C., & Orji, M. U. (2020). The Economics of Groundnut Processing and Marketing in Nigeria. Nigerian Journal of Agricultural Economics, 10(1), 53-64.
Onianwa, E. P. C. (1999). “Petroleum hydrocarbon levels in sediments of stream and river within Ibadan city, Nigeria,” Bull. Chem. Soc. Ethiopia. 13: 83-85.
Onuoha CI, Arinze AE, Ataga AE (2003). Evaluation of fungi growth in crude oil polluted environment. Glob. J. Agric. Sci. ISSN (2): 1596-2903.
Osuji, L. C., Adebusoye, S. A., and Oyetibo, G. O. (2018). Hydrocarbons in engine oil negatively affect floral development and reproductive success. Environmental Monitoring and Assessment, 190(12), 682.
Pandey, V. C., Singh, N., & Singh, R. P. (2020). Oil's ability to alter nutrient availability and disrupt physiological processes in plants. Chemosphere 2020; 242:125120.
Ribes, A., Torres, J. O. Torres, C. J. and Cuevas, E. (2003). “Polycyclic aromatic hydrocarbons in mountain soils of the subtropical Atlantic,” J. Environ. Qual., vol. 32, no. 4, pp. 977-987.
Savage, G.P. and Keenan, J.J. (1994). The composition and nutrients of groundnut kernels. In: Smartt J, ed., The Groundnut Crop: A Scientific Basis for Improvement. Chapman & Hall, London. pp. 173–213.
Sekhon, K. S., Ahuja, K. L., Sandhu, R. S., & Bhatia, I. S. (1972). Variability in the fatty acid composition of peanut 1. Bunch group. Journal of the Science of Food and Agriculture. 23: 919–924.
Shilman, F., Brand, Y., Brand, A., Hedvat, I., Hovav, R. (2011). Identification and molecular characterization of homeologous Δ9-stearoyl acyl carrier protein desaturase 3 genes of the allotetraploid peanut (Arachis hypogaea). Plant Molecular Biology Reporter. 29: 232–241.
Sicard, P., De Marco, A., Agathokleous, E., Feng, Z., Xu, X., Paoletti, E., & Rodriguez, J. J. D. (2018). Amplified ozone pollution in cities during the COVID-19 lockdown. Scientific Reports, 8(1), 1-8.
Singh, N., Marwa, N., Mishra, S., and Sinha, S. (2017). Phytotoxic effects of engine oil on seedling growth of green gram (Vigna radiata). International Journal of ChemTech Research, 10(6), 347-351.
Singh, N., Pandey, V. C., & Singh, R. P. (2017). Phytotoxic effects of hydrocarbons in spent engine oil. Ecotoxicology and Environmental Safety, 136, 113-120.
Snowden RJ, Ekweozor I. (1987). Impact of a minor oil spill in the estuarine Niger Delta. Marine Pollution Bulletin. 18:595-599.
Stephen, E., and U. J. J. (2010). Comparison of Glycine max and Sida acuta in the phytoremediation of waste lubricating oil polluted soil. Nature and Science 9: 190-193.
Suchoszek-Lukaniuk, K., Jaromin, A., Korycinska, M., Kozubek, A. (2011). Health benefits of peanut (Arachis hypogaea L.) seeds and peanut oil consumption. In: Preedy, V.R., Watson, R.R., Patel, V.B., eds. Nuts and Seeds in Health and Disease Prevention. Elsevier, London. pp. 873–880.
Tuttolomondo, T., Licata, M., Leto, C., Bonsangue, G., Leto, G., & La Bella, S. (2019). Impacts of metal (loid)s and organic pollutants on soil microbial diversity: A review. Journal of Environmental Management, 242, 343-353.
Ugwuona, F. U., Ugwu, F. M., and Odii, M. A. (2015). Effects of Groundnut Haulms (Arachis hypogaea) Supplementation on the Performance of West African Dwarf Sheep. Journal of Veterinary Advances, 5(10), 928-934.
UNEP (2016). Environmental assessment of Ogoniland. United Nations Environment Programme. 2011. Available online at http://www.unep.org/nigeria. Accessed on September 26, 2016.
Upadhyaya, H. D., Swamy, B. P. M., Goudar, P. V. K., Kullaiswamy, B. Y., Singh, S. (2005). Identification of diverse groundnut germplasm using multienvironment evaluation of a core collection for Asia. Field Crops Research. 93: 293–299
Varshney, R. K., Pandey, M. K., Janila, P., Nigam, S. N., Sudini, H., Gowda, M. V. C. & Guo, B. (2013). Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 126(2), 419-427.
Young C.T. and Waller G.K. (1972). Rapid oleic/linoleic microanalytical procedure for peanuts. Journal of Agricultural and Food Chemistry, 20(6), 1116-1118