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 New families of continuous probability distributions have been 

introduced; the so-called Development of Transmuted Lomax Gamma 

Distribution application and its properties were proposed and studied. 

Various structural properties, including explicit expressions for the 

moments, quantile functions, order statistics, survival functions, hazard 

functions, and estimations of new distributions were derived. The 

performances of the maximum -likelihood estimates of the parameters 

of the Transmuted Lomax Gamma family were evaluated through a 

simulation study. After applying the new distribution to real data, we 

compared its performance to that of other competing distributions and 

found that the Transmuted Lomax Gamma distribution performed 

better when using BIC, AIC, and CAIC. Furthermore, we also 

concluded that the distribution can be used to model highly skewed data 

(skewed to the right). 
 

 

INTRODUCTION 

The Transmuted Lomax-Gamma Distribution is a versatile statistical distribution that has been applied in various 

fields, including engineering, economics, and environmental studies. This distribution is a compound distribution 

that arises from a mixture of Lomax and Gamma distributions, offering flexibility in capturing various shapes and 

tail behaviors. To provide a brief introduction, the Lomax distribution, also known as the Pareto Type II 

distribution, is a heavy-tailed distribution commonly used to model extreme value phenomena. Transmuted 

Lomax-Gamma Distribution: Theory and Applications. Communications in Statistics - Theory and Methods. 

In contrast the Gamma distribution is a flexible continuous probability distribution that is often employed in 

various areas, such as reliability analysis, queuing theory, and income modeling. The transmuted Lomax-Gamma 

distribution results from the combination of these two distributions, to forming a new distribution that inherits 

properties from both parent distributions. This composite allows for a rich representation of data with variability, 

skewness, and heavy-tailed characteristics, making it a useful tool for modeling real-life phenomena. The 

transmuted Lomax-Gamma distribution is defined by a set of parameters that govern its shape, scale, and 

transmutation features. These parameters enable practitioners to tailor the distribution to the specific features of 

the data at hand, thereby enhancing its applicability to diverse problems. One of the key advantages of the 
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transmuted Lomax-Gamma distribution is its ability to capture diverse shapes of data, including unimodal, 

bimodal, and skewed distributions. This flexibility is particularly valuable when the underlying data exhibit 

complex and varied patterns. 

Furthermore, the transmuted Lomax-Gamma distribution provides a rich framework for statistical inference, 

including parameter estimation, hypothesis testing, and model assessment. This ensures that practitioners can 

make informed decisions based on rigorous data analyses. The study of the transmuted Lomax-Gamma 

distribution was motivated by need for a flexible and versatile statistical model that combines the characteristics 

of the Lomax and Gamma distributions. This distribution has gained attention recently due to its applicability in 

various fields, such as reliability analysis, survival modeling, and risk assessment. The transmuted Lomax-

Gamma distribution is a flexible and customizable statistical model that combines the characteristics of Lomax 

and Gamma distributions through a transmutation process. This distribution provides researchers with a versatile 

tool for modeling several data patterns with varying skewness and tail characteristics. By adjusting the 

transmutation parameter, the shape and behavior of the distribution can be tailored to suit different types of data, 

making it a valuable asset for statistical analysis. 

In this paper, article we present the cumulative distribution function (cdf) and the probability density function 

(pdf) of the Transmuted Lomax Gamma family of distributions, using the Lomax Gamma family proposed by 

Cordeiro et al (2019). They defined the cumulative distribution function (cdf) and the probability density function 

of the Lomax Gamma family of distribution as; if G(x) denotes the cumulative distribution function (cdf) of a 

random variable, the Lomax Gamma cdf family is  

𝐹𝐿𝐺(𝑥) = 1 − αβ + (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

 (1) 

𝐶𝐷𝐹 = {

0 x < 0
1

λαг(α)
∫ 𝓍α−1 𝑒−

𝑥
λ𝑑𝑥

𝑥

0

 x ≥ 0 

Its associated pdf is: 

𝑓𝐿𝐺(𝑥) =
𝛽𝛼𝛽𝑔(𝑥)

(1 − 𝐺(𝑥))
2 (𝛼 +

𝐺(𝑥)

1 − 𝐺(𝑥)
)

−𝛽+1

 (2) 

Where 𝛼, 𝛽 > 0 are the shape parameters 

The Transmuted family of distributions was developed by Shaw and Buckley (2009); they were prompted by the 

need to provide parametric families of distribution that would be flexible and, at the same time, would be expected 

to be useful not only in finance but also in other wider areas in Statistics. 

The formulation of the transmuted family of distributions involved the use of a transmutation map, which was 

described by Shaw and Buckley (2007) as a function comprises the cdf of one distribution with the quantile 

function of another. The approach was aimed at inducing skewness or kurtosis, as may occur in available 

distributions. Therefore, Shaw and Buckley (2009) defined the transmuted gamma family of distributions as 

follows: 

FTLG = 
βαβg(x)

𝐺 (𝑥)2
(α + 

𝐺(𝑥)

Ğ(𝑥)
)

−𝛽−1

 {(1 +  λ) − 2λ {1 − αβ (α +
𝐺(𝑥)

Ğ(𝑥)
)

−𝛽

 }} (3) 

  𝑓𝑇𝐿𝐺 = (𝑔(𝑥;  𝐽)  =  1 (4) 

Where 𝑔(𝑥) and 𝐺(𝑥) are the baseline 𝑐𝑑𝑓 and 𝑝𝑑𝑓 respectively for |𝜆| ≤ 1 
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Now, they 𝑐𝑑𝑓 and 𝑝𝑑𝑓 of new Transmuted Lomax-G family of distributions are defined by combining the two 

cumulative distribution function of equation (1) and (3), as well as the two-probability density function of 

equation (2) and (4), respectively. This yields the cdf and pdf of the Transmuted Lomax Gamma family of 

distributions, as given below: 

𝐹𝑇𝐿𝐺(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) = {1 − 𝛼𝛽 (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

} (1 + 𝜆) − 𝜆 {1 − 𝛼𝛽 (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

}

2

 (7) 

  

𝑓𝑇𝐿𝐺(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) =
𝛽𝛼𝛽𝑔(𝑥)

�̅�(𝑥)2
(𝛼 +

𝐺(𝑥)

�̅�(𝑥)
)

−𝛽+1

{(1 + 𝜆) − 2𝜆 [1 − 𝛼𝛽 (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

]} (8) 

Where �̅�(𝑥) = �̅�(𝑥) = 1 − 𝐺(𝑥) and 𝜃 is a vector of parameters for the baseline distribution, 𝛼, 𝛽 > 0 are the 

shape parameters, |𝜆| ≤ 1 is the transmuted parameter. For 𝜆 = 0, we have the Lomax Gamma proposed by 

Cordeiro et al. (2019). Henceforth, we denote random variable X having PDF (6) as follows: 

𝑋~𝑇𝐿𝐺(𝑥; 𝛼, 𝛽, 𝜆, 𝜃). 

1 Transmuted Lomax Gamma Distribution Validation 

If X is a continuous probability density function, the following condition must be satisfied: 

1. 𝑓(𝑥) ≥ 0 (non-negativity property) 

2. ∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
 

3. 𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

The properties of the Model 

i  г(α) = ∫ 𝓍α−1 𝑒−𝑥𝑑𝑥;
∞

0
 

ii ∫ 𝓍α−1 𝑒−λ𝑥𝑑𝑥 =
г(α)

λα

∞

0
, 𝑓𝑜𝑟 λ > 0;  

iii г(α + 1) = αг(α); 

iv г(n) = (𝑛 − 1)!, 𝑓𝑜𝑟 𝑛 = 1,2,3, … ; 

v г (
1

2
) = √𝜋. 

Proof: Consider the new pdf of the Transmuted Lomax Gamma family of distributions in (8). 

𝑓𝑇𝐿𝐺(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) =
𝛽𝛼𝛽𝑔(𝑥)

�̅�(𝑥)2
[𝛼 +

𝐺(𝑥)

�̅�(𝑥)
]

−𝛽+1

{(1 + 𝜆) − 2𝜆 [1 − 𝛼𝛽 (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

]} (9) 

 𝑓𝑜𝑟 𝛼, 𝛽, 𝜆, 𝜃 > 0  

For (1) to be valid, ∫ 𝑓(𝑥)𝑑𝑥 = 1
∞

−∞
 (10) 
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𝐹𝑇𝐿𝐺(𝑥, 𝛼, 𝛽, λ, 𝜃)

=
𝛽𝛼𝛽( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)

× (1

− 𝐺(𝑋))2 (𝛼

+
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)
× (1

− 𝐺(𝑋))

−𝛽+1

{(1 + λ)

− 2λ [1

− 𝛼𝛽 (𝛼 +
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)
× (1

− 𝐺(𝑋)))

−𝛽

]} 
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𝐹𝑇𝐿𝐺(𝑥, 𝛼, 𝛽, λ, 𝜃)

=
𝛽𝛼𝛽( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)

× (1 −
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)
)

2

[𝛼

+
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)

× (1

−
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)
)]

−𝛽+1

{(1

+ λ)

− 2λ [1

− 𝛼𝛽 (𝛼 +
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)
× 1

−
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)
)

−𝛽

]} 

 If we expand the above, something can be eliminated, and then we have that in the 

following:𝐹𝑇𝐿𝐺(𝑥, 𝛼, 𝛽, λ, 𝜃) =
𝛽𝛼𝛽( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)
[𝛼 + 1]−𝛽+1{(1 + λ) − 2λ[1 − 𝛼𝛽(𝛼 + 1)−𝛽]} 

 𝒔𝒆𝒕, 𝜷 = 𝟏 

1𝛼1( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)
[𝛼 + 1]−1+1{(1 + λ) − 2λ[1 − 𝛼1(𝛼 + 1)−1]} 

𝛼( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)
[1]0 {(1 + λ) − 2λ [1 − 𝛼 [

1

(1)
]]} 

  By applying the integration, we obtain the folllowing. 

= ∫
λ( 2λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)

1

0

 

2λ λ𝛼

г(α)
∫ 𝑥𝛼−1𝑒−λ𝑥𝑑λ

1

0

 

  Recall that from property (2) of the gamma function: 

=
λ𝛼

г(α)
×

г(α)

λα,
∫ 2λ𝑑λ

1

0
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= ∫ 2λ𝑑λ
1

0

 

𝛼, 𝛽, 𝜆, 𝜃 > 0 

2 Quantile Function 

The Quantile function is used to partition probability distributions, obtain the median of a distribution, and 

simulate random numbers.  

Let 𝐹(𝑥)  = 𝑢 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑄(𝑢)  

𝐹(𝑄(𝑢)) = 𝑢 ⇒ 𝑄(𝑢) = 𝐹−1(𝑢)𝑓𝑜𝑟0 < 𝑢 < 1  

We can convert Eq. (7) to obtain the quartile function of the TLG family as follows: 

𝑢 = 1 − 𝛼𝛽 (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽
(1 + 𝜆) − 𝜆 {1 − 𝛼𝛽 (𝛼𝛽 +

𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

}
2

 (12) 

where 𝑈~𝑈(0.1), i.e. uniformly distributed with intervals 0 and 1, 

𝐹𝑇𝐿𝐺(𝑥, 𝛼, 𝛽, λ, 𝜃)

=
𝛽𝛼𝛽( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)

× (1 −
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)
)

2

[𝛼

+
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)

× (1

−
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)
)]

−𝛽+1

{(1

+ λ)

− λ [1

− 𝛼𝛽 (𝛼 +
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)
× 1

−
𝑥𝛼−1𝑒

−𝑥
λ

λ𝛼г(α)
)

−𝛽

]} 

  If we expand the above, something can be eliminated; thus, we obtain the following. 
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𝐹𝑇𝐿𝐺(𝑥, 𝛼, 𝛽, λ, 𝜃)

=
𝛽𝛼𝛽( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)
[𝛼

+ 1]−𝛽+1{(1 + λ)

− λ[1 − 𝛼𝛽(𝛼 + 1)−𝛽]} 

 𝒔𝒆𝒕, 𝜷 = 𝟏 

1𝛼1( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)
[𝛼 + 1]−1+1{(1 + λ) − λ[1 − 𝛼1(𝛼 + 1)−1]} 

𝛼( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)
[𝛼 + 1]0{(1 + λ) − λ[1 − 𝛼(𝛼 + 1)−1]} 

𝛼( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)
[𝛼 + 1]0 {(1 + λ) − λ [1 − 𝛼 [

1

𝛼 + 1
]]} 

By applying the integration, we obtain the following. 

= ∫
λ( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)

1

0

 

λ λ𝛼

г(α)
∫ 𝑥𝛼−1𝑒−λ𝑥𝑑λ

1

0

 

  Recall that from property (2) of the gamma function: 

=
λ𝛼

г(α)
×

г(α)

λα,
∫ λ𝑑λ

1

0

 

= ∫ λ𝑑λ
1

0

 

Where 𝐺(𝑥)−1 is the quartile function baseline distribution 𝜆 ≠ 𝑢, and 𝛼, 𝛽 > 0 

3 Moment Generating Function (mgf) 

The moment generating function 𝑀𝑥(𝑡) of a random variable X is expressed as follows:  

𝑀𝑥(𝑡) = ∫ 𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥
∞

−∞

 

Therefore, the mg of the TLG family can be expressed as follows:  

𝑀(𝑡) = ∑
𝑡𝑝

𝑝!

∞

𝑝=0

∫ 𝑥𝑝
∞

−∞

𝑓(𝑥)𝑑𝑥 

= ∑
𝑡𝑝

𝑝!

∞

−∞

𝜇𝑟
1 (1) 

𝛾 is Gamma with parameters 𝛼 and λ then, I should find the mean, variance, skewness and kurtosis. 

Mean 

TLG: Transmuted Lomax Gamma 

If X~Gamma(α, λ), then 

 𝐸(𝑋) =
α

λ
, 𝑉𝑎𝑟(𝑋) =

α

λ2 . 

𝐸(𝑋) = ∫ 𝑋𝑓𝑋 (𝑥)𝑑𝑥
∞

0

 = ∫ 𝑥 ×
λα

г(α)
𝓍α − 1𝑒−λ𝓍𝑑𝑥 

∞

0

(15) 
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=
λα

г(α)
∫ 𝑥 × 𝓍α − 1𝑒−λ𝓍𝑑𝑥

∞

0

 

=
λα

г(α)
∫ 𝓍α 𝑒−λ𝓍𝑑𝑥

∞

0

 

=
λα

г(α)

г(α + 1)

λα+1
 

(Using property 2 of the gamma function) 

=
αг(α)

λг(α)
 

(Using property 3 of the gamma function) 

𝐸(𝑋) =
α

λ
. 

Variance 

Similarly, we obtain 𝐸(𝑋2): 

𝐸(𝑋2) = ∫ 𝑥2𝑓𝑋 (𝑥)𝑑𝑥
∞

0
 (16)  

= ∫ 𝑥2 ×
λα

г(α)
𝓍α − 1𝑒−λ𝓍𝑑𝑥

∞

0

 

=
λα

г(α)
∫ 𝑥2 × 𝓍α − 1𝑒−λ𝓍𝑑𝑥

∞

0

 

=
λα

г(α)
∫ 𝓍α+1 𝑒−λ𝓍𝑑𝑥

∞

0

 

=
λα

г(α)

г(α + 2)

λα+2
 

(Using property 2 of the gamma function) 

=
(α + 1)г(α + 1)

λ2г(α)
 

(Using property 3 of the gamma function) 

=
(α + 1)αг(α)

λ2г(α)
 

(Using property 3 of the gamma function) 

=
(α + 1)α

λ2
 

So, we conclude that 

𝑣𝑎𝑟(𝑥) = 𝐸(𝑋) − 𝐸(𝑋)2 

𝑣𝑎𝑟(𝑥) =
(α + 1)α

λ2
−

α2

λ2
  

𝑉𝑎𝑟(𝑋) =
α

λ2
. 

Skewness 

𝟐

√σ
 

𝜇3

σ3 =  
𝛼λ3(𝛼+1) (𝛼+2)

𝛼3/2λ3  (18) 
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=  
1

√𝛼
(𝛼 + 1)(𝛼 + 2) (19) 

=  2𝛼λ3 

Kurtosis  

Let M4 ---> G4 

𝑀4 =  
𝑛(𝑛+1) ∑(𝑥𝑖 𝑥)4 − 3(𝑛−1)(∑(𝑥𝑖 −𝑥)2)

2

(𝑛−1)(𝑛−2)(𝑛−3)
 (20) 

Kurtosis () is a measure of the flatness or peakness of a distribution. 

The fourth moment is estimated as the fourth moment divided by the standard deviation to the power of 4: 

𝛼4  =  
𝐺4

𝐺𝛼
4
 

4 Renyi and Entropy 

𝑓𝑇𝐿𝐺(𝑥; 𝛼, 𝛽, 𝜆, 𝜃)𝑟 =
(𝛽𝛼𝛽)

𝑟
𝑔(𝑥)𝑟(𝛼+

𝐺(𝑥)

�̅�(𝑥)
)

𝑟(𝛽+1)

�̅�(𝑥)2
{𝑟(1 + 𝜆)𝑟 − (2𝜆)𝑟 [1 − 𝛼𝛽 (𝛼 +

𝐺(𝑥)

�̅�(𝑥)
)

−𝑟𝛽

]} (21) 

By applying a power expansion similar to that in the linear presentation section 

𝐼𝑟(𝑥) = (1 − 𝑟)−1 log {∫ [ ∑ (
𝛽

𝛼
)

𝑟∞

𝑖,𝑗=0

𝛼−𝑖  
√𝑖 + 2𝑟 + 𝑗

𝑗! √1 + 2𝑟
𝐺(𝑥; 𝜃)𝑖+𝑗𝑔(𝑥; 𝜃)𝑟 [(

−𝑟(𝛽 + 1)
𝑖

) (1 + 𝜆)𝑟
∞

0

− (2𝜆)𝑟 (
−𝑟(𝛽 + 1)

𝑖
) + (2𝜆)𝑟 (

−𝑟(2𝛽 + 1)
𝑖

)]]} 

𝐼𝑟(𝑥) = (1 − 𝑟)−1 log {∫ ∑ 𝐵𝑖𝑗𝐸𝑖+𝑗(𝑥)

∞

𝑖,𝑗=0

∞

0

𝑑𝑥} (22) 

Where; 

𝐵𝑖𝑗 = (
𝛽

𝛼
)

𝑟

𝛼−𝑖  
√𝑖 + 2𝑟 + 𝑗

𝑗! √𝑖 + 2𝑟
[(

−𝑟(𝛽 + 1)
𝑖

) (1 + 𝜆)𝑟 − (2𝜆)𝑟 (
−𝑟(𝛽 + 1)

𝑖
) + (2𝜆)𝑟 (

−𝑟(2𝛽 + 1)
𝑖

)] 

Furthermore, 

𝐸𝑖+𝑗(𝑥) = 𝑔(𝑥)𝑟 , 𝐺(𝑥)𝑖+𝑗 

5 Order Statistics 

The pdf for the rth order statistics𝑋𝑟=𝑛, of a random sample 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛 of sets n𝑓𝑟=𝑛(𝑥) is determined as 

𝑓𝑟=𝑛(𝑥) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝐹𝑇𝐿𝐺(𝑥)𝑟−1(1 − 𝐹𝑇𝐿𝐺(𝑥)𝑛−𝑟)𝐹𝑇𝐿𝐺(𝑥), 𝑓𝑜𝑟 𝑟 = 1,2,3, … 𝑛 (23) 

𝐹𝑚𝑖𝑛 (𝑥)  =  𝐹1(𝑥)  =  1 − 𝑝 (𝑋𝑚𝑖𝑛  >  𝑋) 

=  1 − 𝑝 (𝑋1 > 𝑋, 𝑋2 > 𝑋, . . . 𝑋𝑛  >  𝑋) 

=  1 − (1 − 𝐹1(𝑥))(1 − 𝐹2 (𝑥)) . . . (1 −  𝐹𝑛 (𝑥)) 

=  1 − 𝑝 (𝑋1 > 𝑋, 𝑋2 > 𝑋, . . . 𝑋𝑛  >  𝑋) 

=  1 −  (1 − 𝐹(𝑥))𝑛 

𝐹𝑚𝑖𝑛 (𝑥)  =  
𝑑

𝑑𝑥
 (1 − 𝐹(𝑥))𝑛  =  𝑛 (1 − 𝐹 (𝑥))𝑛−1 𝐹(𝑥) 

The first-order statistic is the smallest sample value (i.e the minimum) once the values have been placed in order. 
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By expanding [𝐹𝑇𝐿𝐺(𝑥)]𝑟−1 using binomial series expansion given 

[𝐹𝑇𝐿𝐺(𝑥)]𝑟−1 = ∑(−1)𝑘

𝑟−1

𝑘=0

(
𝑟 − 1

𝑘
) (1 − 𝐹𝑇𝐿𝐺(𝑥))

𝑘
 

Substituting back into equation (12), we obtain  

𝑓𝑟=𝑛(𝑥) =
𝑛! 𝑓(𝑥)

(𝑟 − 1)! (𝑛 − 𝑟)!
∑(−1)𝑘

𝑟−1

𝑘=0

(
𝑟 − 1

𝑘
) (1 − 𝐹𝑇𝐿𝐺(𝑥))

𝑛−𝑟−𝑘
 

= 𝑓𝑇𝐿𝐺(𝑥)[1 − 𝐹𝑇𝐿𝐺(𝑥)]𝑛−𝑟+𝑘 

=
𝛽𝛼𝛽𝑔(𝑥)

�̅�(𝑥)2
(𝛼 +

𝐺(𝑥)

�̅�(𝑥)
)

−𝛽−1

{(1 − 𝜆) − 2𝜆 [1 − 𝛼𝛽 (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

]} [𝛼𝛽 (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

]

𝑛−𝑟+𝑘

 

=
𝛽𝑔(𝑥)𝛼𝛽+𝑛−𝑟+𝑘

�̅�(𝑥)2
(𝛼 +

𝐺(𝑥)

�̅�(𝑥)
)

𝑛+𝑘−𝑟−𝛽−1

(1 − 𝜆)
2𝜆𝛽𝛼𝛽+𝑛−𝑟+𝑘𝑔(𝑥)

�̅�(𝑥)2
(𝛼 +

𝐺(𝑥)

�̅�(𝑥)
)

𝑛−𝑟+𝑘−𝛽−1

+
2𝜆𝑔(𝑥)

�̅�(𝑥)2
𝛽𝛼𝑛−2𝛽−𝑟+𝑘−1 (𝛼 +

𝐺(𝑥)

�̅�(𝑥)
)

𝑛−2𝛽−𝑟+𝑘−1

 

= ∑ 𝑔(𝑥)𝐺(𝑥)𝑖+𝑗

∞

𝑖𝑗=0

𝛽
√𝑖 + 𝑗 + 2

𝑗! √𝑖 + 𝑗
[(

𝑛 + 𝑘 − 𝑟 − 𝛽 − 1
𝑖

) 𝛼2𝑛−2𝑟+2𝑘−1−𝑖(1 + 𝜆)

− 2𝜆 (
𝑛 + 𝑘 − 𝑟 − 𝛽 − 1

𝑖
) 𝛼2𝑛−2𝑟+2𝑘+1 + 2𝜆 (

𝑛 − 2𝛽 − 𝑟 + 𝑘 − 1
𝑖

) 𝛼2𝑛−2𝛽−2𝑟+2𝑘−𝜆−1] 

Therefore, 

𝑓𝑟=𝑛(𝑥) =
𝑛! ∑ (−1)𝑘𝑟=1

0 (
𝑟 − 1

𝑘
)

(𝑟 − 1)! (𝑛 − 𝑟)!
∑ 𝑂𝑖𝑗

∞

𝑖,𝑗=0

𝑔(𝑥)𝐺(𝑥)𝑖+𝑗 (24) 

Where; 

𝑂𝑖𝑗 = 𝛽
√𝑖 + 𝑗 + 2

𝑗! √𝑖 + 𝑗
[(

𝑛 + 𝑘 − 𝑟 − 𝛽 − 1
𝑖

) 𝛼2𝑛−2𝑟+2𝑘−1−𝑖(1 + 𝜆) − 2𝜆 (
𝑛 + 𝑘 − 𝑟 − 𝛽 − 1

𝑖
) 𝛼2𝑛−2𝑟+2𝑘+1

+ 2𝜆𝛼2𝑛−2𝛽−2𝑟+2𝑘−2𝑖 (
𝑛 − 2𝛽 − 𝑟 + 𝑘 − 1

𝑖
)] 

6 Hazard Function 

The hazard function is the probability that a component will die over a certain period. 

The hazard function is defined as follows: 

ℎ(𝑥) =
𝑓(𝑥)

1−𝐹(𝑥)
 (25) 

Here, f(x) and F(X) are the pdf and cdf of the Transmuted Lomax-G family of distributions given in equations (7) 

and (8), respectively. 

Substituting for f(x) and F(X) and simplifying gives 

ℎ𝑇𝐿𝐺(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) =
𝑓(𝑥)

1 − 𝐹(𝑥)
 

=

𝛽𝑔(𝑥; 𝜃) (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽+1

[1 + 𝜆 − 2𝜆 (1 − 𝛼𝛽 (𝛼𝛽 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

)]

[1 − 𝐺(𝑥)]2
 (26) 
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2𝛼λ𝑥𝛼−1 [1 − 𝑥2𝛼]λ−1

[1 − 𝑥2𝛼]λ
 

2𝛼λ [1 − 𝑥2𝛼]λ−1

[1 − 𝑥2𝛼]λ [1 − 𝑥2𝛼]
 

[2𝛼λ𝑥𝛼−1 ]

1 − 𝑥2𝛼  
 

2𝛼λ𝑥𝛼−1 

1 − 𝑥2𝛼  
 

7 Survival Function 

The Survival function is the probability that an individual or a system will not fail for a given time. 

Mathematically, it is given by given as  

𝑆(𝑥) = 1 − 𝐺(𝑥) 

Here, F(x) is the cdf of the new Transmuted Lomax-G family of distributions. 

By substituting, we have:  

𝑆𝑇𝐿𝐺(𝑥; 𝛼, 𝛽, 𝜆, 𝜃) = 1 − 𝐺(𝑥) = 𝛼𝛽 (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

 (27) 

𝑆(𝑥)  =  1 −  𝐺(𝑥) 

1 − {1 − [1 − 𝑥2𝛼]λ} 

{1 − 1 + [1 − 𝑥2𝛼]λ} 

𝑆(𝑥)  = [1 − 𝑥2𝛼]λ 

8 Estimation 

In this section, we estimate estimation of the parameters of the Transmuted Lomax-G family of distributions 

(TLG) using the Maximum Likelihood estimation method. Let 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛 be a random sample of size n 

from the TLG family of distributions, and the likelihood function is expressed as follows:  

∏ 𝑓(𝑥, 𝛼, 𝛽, 𝜆, 𝜃)

𝑛

𝑖=1

= ∏ [
𝛽𝛼𝛽𝑔(𝑥)

�̅�(𝑥)
(𝛼 +

𝐺(𝑥)

�̅�(𝑥)
)

−𝛽−1

{(1 + 𝜆) − 2𝜆 [1 − 𝛼𝛽 (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

]}]

𝑛

𝑖=1

 (28) 

Furthermore, the corresponding log-likelihood function is given by 

𝑙 = 𝑛𝑙𝑜𝑔(𝛽) + 𝑛𝑙𝑜𝑔(𝛼𝛽) + ∑ 𝑙𝑜𝑔(𝑔(𝑥))

𝑛

𝑖=1

− ∑ 𝑙𝑜𝑔(�̅�(𝑥))

𝑛

𝑖=1

− (𝛽 + 1) ∑ 𝑙𝑜𝑔 (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

𝑛

𝑖=1

+ ∑ log [(1 + 𝜆) − 2𝜆 [1 − 𝛼𝛽 (𝛼 +
𝐺(𝑥)

�̅�(𝑥)
)

−𝛽

]]

𝑛

𝑖=0

 

Then, can be rewritten as follows: 

𝑙 = 𝑛𝑙𝑜𝑔𝛽 + 𝛽𝑛𝑙𝑜𝑔𝛼 + ∑ 𝑙𝑜𝑔𝑔(𝑥)

𝑛

𝑖=1

− ∑ 𝑙𝑜𝑔�̅�(𝑥)

𝑛

𝑖=1

− (𝛽 + 1) ∑ 𝑙𝑜𝑔(𝛼 + 𝑍𝑖)

𝑛

𝑖=1

+ ∑ 𝑙𝑜𝑔 ((1 + 𝜆) − 2𝜆[1 − 𝛼𝛽(𝛼 + 𝑍𝑖)−𝛽])

𝑛

𝑖=1

 (29) 

Where;  
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𝑍𝑖 =
𝐺(𝑥)

�̅�(𝑥)
 

By differentiating equation (25) partially with respect to the parameters, we obtain the following: 

𝑈(𝜓) = (
𝜕𝑙

𝜕𝛼
,

𝜕𝑙

𝜕𝛽
,

𝜕𝑙

𝜕𝜆
,

𝜕𝑙

𝜕𝜃
)

𝑇

 Which is the score function as follows 

𝜕𝑙

𝜕𝛼
=

𝑛𝛽

𝛼
− (𝛽 + 1) ∑

1

(𝛼 + 𝑍𝑖)
+

2𝜆𝛼𝛽𝛽(𝛼 + 𝑍𝑖)−𝛽[𝛼−1 − (𝛼 + 𝑍𝑖)−1]

[1 + 𝜆 − 2𝜆(1 − 𝛼𝛽(𝛼 + 𝑍𝑖)−𝛽)]

𝑛

𝑖=1

 (30) 

𝜕𝑙

𝜕𝜆
=

−1 + 2𝛼𝛽(𝛼 + 𝑍𝑖)−𝛽

[(1 + 𝜆) − 2𝜆(1 − 𝛼𝛽(𝛼 + 𝑍𝑖)−𝛽)]
 (31) 

𝜕𝑙

𝜕𝛽
=

𝑛

𝛽
+ 𝑛𝑙𝑜𝑔𝛼 − ∑ 𝑙𝑜𝑔(𝛼 + 𝑍𝑖)

𝑛

𝑖=1

+
2𝜆𝛼𝛽Ι𝑛𝛼(𝛼 + 𝑍𝑖)

−𝛽 + (𝛼 + 𝑍𝑖)

(𝛼 + 𝑍𝑖)𝛽[1 + 𝜆 − 2𝜆(1 − 𝛼𝛽(𝛼 + 𝑍𝑖)−𝛽)]
 (32) 

𝜕𝑙

𝜕𝜃
= ∑

𝑔(𝑥)

�̅�(𝑥)

𝑛

𝑖=1

∑
𝑔(𝑥)

�̅�(𝑥)

𝑛

𝑖=1

− (𝛽 + 1) ∑
𝑔(𝑥)

[1 − 𝐺(𝑥)]2(𝛼 + 𝑍𝑖)

𝑛

𝑖=1

− ∑
2𝜆𝛼𝛽𝛽(𝛼 + 𝑍𝑖)−𝛽−1𝑔(𝑥)

[1 − 𝐺(𝑥)]2[1 + 𝜆 − 2𝜆(1 − 𝛼𝛽(𝛼 + 𝑍𝑖)−𝛽)]

𝑛

𝑖=1

 (33) 

Setting the equations above to zero and solving them simultaneously also yields the Maximum likelihood 

estimations of the four parameters. 

Simulation Studies 

Consider the equation 𝐹(𝑥) − 𝑢 = 0, 𝑢 is an observation drawn from uniform distribution (0, 1) and 𝐹(𝑥) the 

cdf of the Transmuted Lomax-G family of distributions was used to carry out the simulation study and generate 

data from Transmuted Lomax Gamma distributions using a Monte Carlo simulation. The Monte Carlo simulation 

is described by the different sizes of the samples in the quantile function of the transmuted Lomax gamma 

distributions.  

Real Dataset:  

There are two datasets for the application of this research work article; the first dataset is the sum of skin folds 

dataset, which contains 202 observations. These data were the sum of skin folds in 202 athletes from the America 

Institute of Sports, while the second dataset was the Duncan data. For these data, we fitted and tested the 

transmuted Lomax Gamma (TLG) distribution defined in (24) and also compared its fit with the following 

distribution models, “Transmuted Gamma by Adeyinka (2020)  

Their corresponding densities are as follows: 

1. Transmuted Gamma by Adeyinka (2020)  

𝐹𝑇𝐿𝐺(𝑥, 𝛼, 𝛽, λ, 𝜃)

=
𝛽𝛼𝛽( λ𝛼𝑥𝛼−1𝑒−λ𝑥)

г(α)
[𝛼

+ 1]−𝛽+1{(1 + λ)

− 2λ[1 − 𝛼𝛽(𝛼 + 1)−𝛽]} 

2. Probability density function of Gamma, cumulative density function, and quantile function of Gamma  

3. Hazard and survival functions of gamma  

Simulation Results for TLG Distribution 

A Monte Carlo simulation was performed and the results of the mean, bias, and mean squared error of the 

estimated parameter values are presented in Tables 4.2.1. The Monte Carlo simulation is described below: 
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i.For the parameter values of Transmuted Lomax Gamma Distribution, samples of different sizes were generated 

with small parameter values (𝛼 = 0.5, 𝛽 = 1.6, 𝜆 = 0.8, 𝜃 = 2.9) using the quantile function. 

ii.Using the maximum-likelihood method, we computed the MLE of �̂�𝑖, �̂�𝑖, �̂�𝑖, 𝑎𝑛𝑑 𝜃𝑖 for the 𝑖𝑡ℎ replicate. 

iii.Steps (i) and (ii) are replicated N = 300 times. 

iv.The mean, bias, and mean squared error for each sample size n were computed as follows: 

�̂� =
1

𝑁
∑ 𝜇𝑖

𝑁

𝑖=1

, 𝐵𝑖𝑎𝑠(�̂�) = (�̂� − 𝜇), 𝑀𝑆𝐸(�̂�) =
1

𝑁
∑(�̂�𝑖 − 𝜇)2

𝑁

𝑖=1

 (34) 

Where �̂�𝑖 = (�̂�𝑖, �̂�𝑖, �̂�𝑖, 𝜃𝑖) are the MLE for the ith replicate. The same number of dimensions are n = 50, 150, 300, 

and 400.  

 

 Table 4.3: Simulation Results for the TLG Distribution  

N Properties 𝛼 = 0.5 𝛽 = 1.6 𝜆 = 0.8 𝜃 = 2.8 

50 Mean 

Bias 

MSE 

0.8671 

0.3671 

5.3984 

0.9766 

-0.6234 

5.6935 

1.9313 

1.1313 

1836.327 

2.6947 

-0.2053 

4.0996 

150 Mean 

Bias 

MSE 

0.6246 

0.1246 

0.1294 

0.9449 

-.0.6551 

0.7349 

0.5019 

-0.2981 

0.2845 

1.9534 

-0.9466 

2.6235 

300 Mean 

Bias 

MSE 

0.6174 

0.1174 

0.0713 

0.9735 

-0.6265 

0.9538 

0.6252 

-0.1748 

0.1272 

1.5877 

-1.3129 

2.7146 

The table 4.3 presents and evaluates the behavior of the mean, bias, and mean squared error (MSE) of the 

estimates, and we can see clearly that the values of the bias and MSEs decrease as the sample size increases, they 

all approached zero. Also, the estimates tend to the initial value, which shows that the estimates are unbiased and 

efficient, and the MSEs tending to zero shows precision of the estimates. 

9 Application’s Results 

We illustrate the application of the TLG distribution to two data set; the data set of Sum of skins folds data and 

Duncan data, as reported in The Generalized Odd Gamma-Family of Distributions: Properties and Applications. 

Table 4.4: MLEs for the Sum of Skinfold and Duncan Data 

Data sets Models MLEs 

𝛼 𝛽 𝜆 𝜃 

Sum of skin fold 

data 

TLGD 

ECTED 

WGED 

MOLED 

2.98125744 

3.90751107 

0.14536807 

2.28932487 

0.06399661 

0.05450552 

0.44556179 

4.81178314 

7.79332026 

6.28645295 

0.05207786 

0.06632972 

1.46156475 

 

Duncan data TLGD 

ECTED 

WGED 

MOLED 

4.27891236 

6.77114915 

0.005943488 

4.325145080 

0.19560368 

0.04800918 

0.093204440 

5.924578863 

9.72772822 

7.88137146 

0.542105630 

0.009126324 

0.02785846 

4.80175080 
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4.2.3 Densities plots 

The estimated density plots of the datasets are presented in fig. 1, 2, 3, 4, and 5, respectively. These include plots 

of the cdf and pdf, hazard rate, and survival rate of the (TLG) distribution. The plots are as follows: 

  
Fig. 4.1: Probability density function (PDF) of the TLG distribution. 

PDF of the TLG distribution for selected parameter values 𝜃, 𝜆, 𝛼 𝑎𝑛𝑑 𝛽 𝑤𝑖𝑡ℎ 𝛾 = 1. 

The plot for the PDF reveals that the TLG distribution is positively skewed and thus is a good model for a 

positively skewed dataset. 

 
Fig. 4.2: Cumulative density function (CDF) of the TLG distribution. 

Figure 4.2 shows some possible shapes of the cumulative distribution function of the TLG distribution for selected 

values of the parameters. 𝜃, 𝜆, 𝛼 𝑎𝑛𝑑 𝛽 𝑤𝑖𝑡ℎ 𝛾 = 1. 

CDF of the TLG distribution for selected values of the parameters. 
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The graphical representation of the cumulative function for different possible values of the parameter is shown in 

figure. 4.2, which is always an increasing function. 

 
Fig. 4.3: Quantile Function of TLG Distribution 

The quantile function for selected parameter values of the 𝜃, 𝜆, 𝛼 𝑎𝑛𝑑 𝛽 𝑤𝑖𝑡ℎ 𝛾 = 1. 

The plot for the quantile function reveals that the quantile function is positively skewed and therefore will be a 

good model for a positively skewed dataset. 

 
Fig. 4.4: Hazard plot of the TLG Distribution 

Figure 4.4 illustrates some of the possible shapes of the hazard function of the TLG distribution for selected values 

of the parameters. 𝛼 𝑎𝑛𝑑 𝛽 𝑤𝑖𝑡ℎ 𝛾 = 1. 

Hazard functions of the TLG distribution for selected values of the parameters. 
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The graphical representation of the hazard function for different possible values of the parameter is shown in 

figure 4.4, which is always a decreasing function. 

 
Fig. 4.5: The Survival plot of the TLG Distribution 

Figure 4.5 illustrates some of the possible shapes of the survival function of the TLG distribution for selected 

values of the parameters. 𝛼 𝑎𝑛𝑑 𝛽 𝑤𝑖𝑡ℎ 𝛾 = 1. 

Survival function of the TLG distribution for selected values of the parameters. 

The graphical representation of the survival function for different possible values of the parameter is shown in 

figure 4.5, which is always an increasing function. 

 Model selection was perform using the Akaike Information Criterion (AIC), Bayesian Information Criterion 

(BIC), Consistent Akaike Information Criterion (CAIC), and Hannan-Quinn Information Criterion (HQIC). The 

model with the minimum value of AIC or BIC, CAIC, and HQIC was selected as the best model to fit the data.  

Table 4.2.3: Goodness of Fits Statistics for the Datasets  

Data sets Models MLEs 

𝐴𝐼𝐶 𝐵𝐼𝐶 𝐶𝐴𝐼𝐶 𝐻𝑄𝐼𝐶 Value 

Sum of skin fold 

data 

TLGD 

ECTED 

WGED 

MOLED 

1649.084 

1966.286 

2066.381 

1942.726 

1662.317 

1979.519 

2076.306 

1952.651 

1649.287 

1966.489 

2066.503 

1942.847 

1654.438 

1971.64 

2070.397 

1946.742 

820.542 

979.1428 

1030.191 

968.363 

Duncan data TLGD 

ECTED 

WGED 

MOLED 

800.146 

866.945 

852.3523 

855.1786 

810.5666 

877.3657 

860.1678 

862.9941 

800.567 

867,3661 

852.6023 

855.4286 

804.3634 

871.1624 

855.5154 

858.3416 

396.073 

429.4725 

423.1761 

424.5893 

10 Conclusions 

We used the adequacy model package in R-Console, and goodness-of-fit analytical measures were used to 

compare the performances of the models. From the table 4.5, the lowest value of the mentioned statistics 

corresponds to the Transmuted Lomax Gamma distribution (TLGD), which means that it fits the datasets better 

than the other three models. Therefore, it should be used for fitting the subject data rather than the other three 

methods. 
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11 Conclusion 

In this study, we introduce a new class of distributions called the Transmuted Lomax -Gamma (TLG) family of 

distributions. This family can extend several widely known models. For instance, we considered the gamma 

distribution as the baseline distribution. We investigated some of the structural properties of the gamma 

distribution for the density function using integration expansion. Some of the derived properties include the 

moment -generating function, Reni and entropies, quantile function, and order statistics. The parameters were 

estimated using the maximum likelihood estimation method. The parameter estimates and the associated 

analytical measures showed that the new model based on the two datasets found that our developed model 

performs better in fitting the dataset than all the other distributions that we compared it with. Therefore, we 

conclude that based on the datasets used in this study, our model should be chosen. 

In additionr, our distribution has a PDF that can be right (positively) skewed, and it has a very heavy fat tail; 

thus, it can capture many types and features of a dataset. The hazard rate function can also increase (shape), or 

decreasing (shape). 
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