Global Journal of Chemistry, Biology and Physics (GJCBP)

MICRONUTRIENT-IMPROVED LIQUID NPK FERTILIZER EFFECT ON GROWTH OF OUR LOCAL CROPS

Authors

  • Ogbuanu, C.C. Department of Industrial Chemistry, Enugu State University of Science and Technology, Enugu, Nigeria.
  • Ike O. C. Department of Industrial Chemistry, Enugu State University of Science and Technology, Enugu, Nigeria.
  • Nwagu, L.N. Department of Industrial Chemistry, Enugu State University of Science and Technology, Enugu, Nigeria.
  • Amobi, T.C. Department of Industrial Chemistry, Enugu State University of Science and Technology, Enugu, Nigeria.
  • Eze, C.N. University of Nigeria Enugu Campus, Centre for Environmental Management and Control
  • Ozoude, A.E. Department of Industrial Chemistry, Caritas University, Amorji–Nike, Enugu State.
  • Anekwe, C.J. Department of Chemistry, Tansian University, Umunya, Anambra, Nigeria
  • Diara, C.I. Department of Industrial and Medicinal Chemistry, David Umahi Federal University of Health Sciences, Uburu, Nigeria
  • Ndikata, O.V. Department of Industrial Chemistry, Enugu State University of Science and Technology, Enugu, Nigeria.

Abstract

This study investigates the effects of liquid NPK fertilizer and micronutrient-improved NPK with specific gravity and pH of the stock solution that decreases with dilution was found to be 1.44 and 5.6 (NPK), and 1.65 and 5.4 (micronutrient-improved NPK) respectively on yield and quality of tomato, curry plant, black beans, and fluted pumpkin. The fertilizers were applied at varying concentrations (0-1.0%) twice a week for two months. The study found that Liquid NPK fertilizer increased crop yields by 49.55-52.80% while Micronutrient-improved NPK liquid fertilizer boosted yields by 55.56-69.47% (dried weight). At optimal concentration (0.5%), micronutrient-improved NPK outperformed liquid NPK by 5.63-16.65%. These findings suggest that applying liquid NPK and micronutrient-improved NPK fertilizers can significantly enhance crop yields, quality, and improving national food security when used effectively

Keywords:

Liquid NPK fertilizer, micronutrient improved NPK liquid fertilizer, wet weight, dry weight, crop yield

Published

2025-08-29

DOI:

https://doi.org/10.5281/zenodo.16994062

How to Cite

Ogbuanu, C. C., Ike, O. C., Nwagu, L. N., Amobi, T. C., Eze, C. N., Ozoude, A. E., … Ndikata, O. V. (2025). MICRONUTRIENT-IMPROVED LIQUID NPK FERTILIZER EFFECT ON GROWTH OF OUR LOCAL CROPS. Global Journal of Chemistry, Biology and Physics (GJCBP), 10(4), 16–31. https://doi.org/10.5281/zenodo.16994062

References

Uchida, R. (2000). Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms. Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture J. A. Silva and R. Uchida, eds. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa.

Ofori, K.F., Antoniello, S., English, M.M. and Aryee, A.N.A. (2022). Improving nutrition through biofortification–A systematic review. Front. Nutr. 9:1043655. doi: 10.3389/fnut.2022.1043655

White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7):1073–1080. https://doi.org/10.1093/aob/mcq085

Jaja, E.T. and Barber, L. I. (2017). Organic and Inorganic Fertilizers in Food Production System in Nigeria. Journal of Biology, Agriculture and Healthcare 7(18) (Online)

Angus, J.F. (2012). Fertilizer Science and Technology. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_193

Broschat, T. K., D. R. Sandrock, M. L. Elliott, and E. F. Gilman. "Effects of Fertilizer Type on Quality and Nutrient Content of Established Landscape Plants in Florida." HortTechnology 18, no. 2 (January 2008): 278–85. http://dx.doi.org/10.21273/horttech.18.2.278.

Kai, T.; Adhikari, D. (2021). Effect of Organic and Chemical Fertilizer Application on Apple Nutrient Content and Orchard Soil Condition. Agriculture 11, 340. https://doi.org/10.3390/agriculture11040340

Khanom, S., Saha, B.K., Islam, M.T. and Chowdhury, M.A.H. (2013). "Influence of Organic and Inorganic Fertilizers on the Growth, Leaf Yield, Chlorophyll and Protein Contents of Stevia Grown in Different Soil Types." Progressive Agriculture 19(1): 23–31. http://dx.doi.org/10.3329/pa.v19i1.16986.

Sangina, N. and Woomer, P.I. (eds). (2009). Integrated soil fertility management in Africa: Principles, practice and development process. Tropical Soil Biology and Fertility Institute of International Center for Tropical Agriculture. Nairobi: P.263.

Toor, M. D., Adnan, M., ur Rehman, F., Tahir, R., Saeed, M. S., Khan, A. U., & Pareek, V. (2021). Nutrients and Their Importance in Agriculture Crop Production; A Review, Ind. J. Pure App. Biosci. 9(1), 1-6. doi: http://dx.doi.org/10.18782/2582-2845.8527

Zewide, I., & Sherefu, A.. (2021). Review Paper on Effect of Micronutrients for Crop Production. J. Nutrition and Food Processing, 4(7); DOI:10.31579/2637-8914/063

Coleto, I., J, A., Alberto, J., Isabel, A., Shi, W., Li, G., & Marino, D. (2023). Interaction of ammonium nutrition with essential mineral cations. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erad215

Ronen, E. (2007). Micro-elements in agriculture. Practical Hydroponics & Greenhouses 6:39–48.

Çalişkan, B., & Çalişkan, A. C. (2018). Potassium Nutrition in Plants and Its Interactions with Other Nutrients in Hydroponic Culture. InTech. doi: 10.5772/intechopen.71951

Jiaying, M., Tingting, C., Jie, L., Weimeng, F., Baohua, F., Guangyan, L., Hubo, L., Juncai, L., Zhihai, W., Longxing, T., & Guanfu, F. (2022). Functions of Nitrogen, Phosphorus and Potassium in Energy Status and Their Influences on Rice Growth and Development. Rice Science, 29(2), 166-178. https://doi.org/10.1016/j.rsci.2022.01.005

Msimbira, L. A., & Smith, D. L. (2020). The Roles of Plant Growth Promoting Microbes in Enhancing Plant Tolerance to Acidity and Alkalinity Stresses. Frontiers in Sustainable Food Systems, 4, 564220. https://doi.org/10.3389/fsufs.2020.00106

Neina, D. (2019). "The Role of Soil pH in Plant Nutrition and Soil Remediation", Applied and Environmental Soil Science, vol. 2019, Article ID 5794869, 9 pages, 2019. https://doi.org/10.1155/2019/5794869

Silver, W. L., Perez, T., Mayer, A. and Jones, A. R. (2021). The role of soil in the contribution of food and feed. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1834). https://doi.org/10.1098/rstb.2020.0181

Javed, A., Ali, E., Afzal, K.B., Osman, A. and Riaz. S. (2-22). Soil Fertility: Factors Affecting Soil Fertility, and Biodiversity Responsible for Soil Fertility. International Journal of Plant, Animal and Environmental Sciences 12: 021-033.

Stewart, R. E. (2023). Fertilizer. Encyclopedia Britannica. https://www.britannica.com/topic/fertilizer.

FAO. 2017. The future of food and agriculture – Trends and challenges. Rome.

Penuelas, J., Coello, F. and Sardans, J. (2023). A better use of fertilizers is needed for global food security and environmental sustainability. Agric & Food Secur 12, 5. https://doi.org/10.1186/s40066-023-00409-5

Stewart, W.M.; Dibb, D.W.; Johnston, A.E.; Smyth, T.J. (2005). "The Contribution of Commercial Fertilizer Nutrients to Food Production". Agronomy Journal. 97: 1–6. doi:10.2134/agronj2005.0001

24. Isleib, J. (2016). Pros and cons of granular and liquid fertilizers. Michigan State University Extension. https://www.canr.msu.edu › news › pros_and_cons_of..

Martínez-Alcántara, B., Martínez-Cuenca, R., Bermejo, A., Legaz, F. and Quiñones, A. (2016). Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic versus Mineral

Bogusz, P., Rusek, P. and Brodowska, M. S. (2021). Suspension Fertilizers: How to Reconcile Sustainable Fertilization and Environmental Protection. Agriculture, 11(10), 1008.

Šarauskis, E., Naujokienė, V., Lekavičienė, K., Kriaučiūnienė, Z., Jotautienė, E., Jasinskas, A. and Zinkevičienė, R. (2020). Application of Granular and Non-Granular Organic Fertilizers in Terms of Energy, Environmental and Economic Efficiency. Sustainability, 13(17), 9740. https://doi.org/10.3390/su13179740

28.Sabry, A.K. (2015). Synthetic fertilizers; role and hazards. Fertil. Technol 1, 110-133.

Bouranis, D. L., Gasparatos, D., Zechmann, B., Bouranis, L. D. and Chorianopoulou, S. N. (2018). The Effect of Granular Commercial Fertilizers Containing Elemental Sulfur on Wheat Yield under Mediterranean Conditions. Plants, 8(1), 2. https://doi.org/10.3390/plants8010002

Stewart, R. E. (2023). fertilizer. Encyclopedia Britannica. https://www.britannica.com/topic/fertilizer

Silva, J. A., & Uchida, R. eds. (2000). Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa.

Kathpalia, R., & Bhatla, S.C.( 2018). Plant Mineral Nutrition. In: Plant Physiology, Development and Metabolism (pp. 37–81). Springer Singapore, doi:10.1007/978-981-13-2023-1_2.

Bittner, F. (2014). Molybdenum metabolism in plants and crosstalk to iron. Frontiers in Plant Science, 5, 76931. https://doi.org/10.3389/fpls.2014.00028

Rana, M.S., Bhantana, P., Imran, M., Saleem, M.H., Saleem, M.H., Moussa , M.G., Khan, Z., Khan, I., Alam, M., Abbas, M., Binyamin, R., Afzal, J., Syaifudin, M., Din, I.U., Younas, M., Ahmad, I., Shah, Md.A., & Chengxiao, Hu. (2020). Molybdenum potential vital role in plants metabolism for optimizing the growth and development. Ann Environ Sci Toxicol 4(1): 032-044. DOI: https://dx.doi.org/10.17352/aest.000024

Oliveira, S. L., Costa Crusciol, C. A., Rodrigues, V. A., Galeriani, T. M., Portugal, J. R., Bossolani, J. W., Moretti, L. G., Calonego, J. C., & Cantarella, H. (2022). Molybdenum Foliar Fertilization Improves Photosynthetic Metabolism and Grain Yields of Field-Grown Soybean and Maize. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.887682

Tokasheva , D., Nurbekova, Z., Akbassova, A., & Omarov, R. (2021). Molybdoenzyme Participation In Plant Biochemical Processes. Eurasian Journal of Applied Biotechnology, (1). https://doi.org/10.11134/btp.1.2021.2

Abou Seeda M. A., Yassen A. A., Abou El-Nour E. A. A., & Sahar M. Zaghloul. (2020). Importance of Molybdenum and it Diverse Role in Plant Physiology: A Review. Middle East Journal of Applied Sciences, 10(02) : 228-249.

Kaiser, B. N., Gridley, K. L., Brady, J. N., Philips, T., & Tyerman, S. D. (2005). The Role of Molybdenum in Agricultural Plant Production. Annals of Botany, 96(5), 745-754. https://doi.org/10.1093/aob/mci226

Saleem, M. H., Usman, K., Rizwan, M., Jabri, H. A., & Alsafran, M. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1033092

Suganya, A., Saravanan, A., & Manivannan, N. (2020) Role of Zinc Nutrition for Increasing Zinc Availability, Uptake, Yield, and Quality of Maize (Zea Mays L.) Grains: An Overview, Communications in Soil Science and Plant Analysis, 51:15, 2001-2021, DOI: 10.1080/00103624.2020.1820030

Kambe, T., Tsuji, T., Hashimoto, A., & Itsumura, N. (2015). The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiological Reviews. https://doi.org/PRV-00035-2014

Yang, M., Li, Y., Liu, Z., Tian, J., Liang, L., Qiu, Y., Wang, G., Du, Q., Cheng, D., Cai, H., Shi, L., Xu, F., & Lian, X. (2020). A high activity zinc transporter OsZIP9 mediates zinc uptake in rice. The Plant journal : for cell and molecular biology, 103(5), 1695–1709. https://doi.org/10.1111/tpj.14855

Alsafran M., Usman K., Ahmed B., Rizwan M., Saleem M. H., Al Jabri H. (2022). Understanding the phytoremediation mechanisms of potentially toxic elements: A proteomic overview of recent advances. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.881242

Noulas, C., Tziouvalekas, M., & Karyotis, T. (2018). Zinc in soils, water and food crops. Journal of Trace Elements in Medicine and Biology, 49, 252-260. https://doi.org/10.1016/j.jtemb.2018.02.009

Sharma, A., Patni, B., Shankhdhar, D., & Shankhdhar, S. C. (2012). Zinc – An Indispensable Micronutrient. Physiology and Molecular Biology of Plants : An International Journal of Functional Plant Biology, 19(1), 11-20. https://doi.org/10.1007/s12298-012-0139-1

Slaton, N.A., Gbur, E.E Jr., Wilson, C.E Jr., & Norman, R.J. (2005a). Rice response to granular zinc sources varying in water soluble zinc. Soil Sci Soc Am J 69:443–452

Noulas, C., Tziouvalekas, M., & Karyotis, T. (2018). Zinc in soils, water and food crops. Journal of Trace Elements in Medicine and Biology, 49, 252-260. https://doi.org/10.1016/j.jtemb.2018.02.009

Subbaiah L. V., Prasad T.N.V.K.V., Krishna T. G., Sudhakar P., Reddy B. R., Pradeep T. (2016). Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays l.). J. Agric. Food Chem. 64 (19), 3778–3788. doi: 10.1021/acs.jafc.6b00838

Aguirre, G., & Pilon, M. (2016). Copper Delivery to Chloroplast Proteins and its Regulation. Frontiers in plant science, 6, 1250. https://doi.org/10.3389/fpls.2015.01250

Laporte, D., Rodríguez, F., González, A. Zúñiga, A., Castro-Nalla, E.., Claudio A. Sáez, C.A., & Alejandra Moenne, A. (2020). Copper-induced concomitant increases in photosynthesis, respiration, and C, N and S assimilation revealed by transcriptomic analyses in Ulva compressa (Chlorophyta). BMC Plant Biol 20, 25 (2020). https://doi.org/10.1186/s12870-019-2229-5

Gautam, S., Anjani, K., & Srivastava, N. (2015). In vitro evaluation of excess copper affecting seedlings and their biochemical characteristics in Carthamus tinctorius L. (variety PBNS-12). Physiology and Molecular Biology of Plants, 22(1), 121-129. https://doi.org/10.1007/s12298-016-0339-1

Tamm, L., Thuerig, B., Apostolov, S., Blogg, H., Borgo, E., Corneo, P. E., Fittje, S., De Palma, M., Donko, A., Experton, C., Alcázar Marín, É., Morell Pérez, Á., Pertot, I., Rasmussen, A., Steinshamn, H., Vetemaa, A., & Willer, H. (2022). Use of Copper-Based Fungicides in Organic Agriculture in Twelve European Countries. Agronomy, 12(3), 673. https://doi.org/10.3390/agronomy12030673

Torre, A. L., Iovino, V. & Casadonia, F. (2018). Copper in plant protection on JSTOR. Phytopathologia Mediterranea, 201. https://doi.org/26507086

Chen, G., Li, J., Han, H., Du, R., & Wang, X. (2022). Physiological and Molecular Mechanisms of Plant Responses to Copper Stress. International Journal of Molecular Sciences, 23(21). https://doi.org/10.3390/ijms232112950

Kumar, V., Pandita, S., Singh Sidhu, G. P., Sharma, A., Khanna, K., Kaur, P., Bali, A. S., & Setia, R. (2020). Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere, 262, 127810. https://doi.org/10.1016/j.chemosphere.2020.127810

Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., & Wang, M. (2021). Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9(3), 42. https://doi.org/10.3390/toxics9030042

Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R. K., Sharma, S., Tripathi, D. K., Dubey, N. K., & Chauhan, D. K. (2016). Influence of High and Low Levels of Plant-Beneficial Heavy Metal Ions on Plant Growth and Development. Frontiers in Environmental Science, 4, 217521. https://doi.org/10.3389/fenvs.2016.00069

José Rodrigues Cruz, F., Leone da Cruz Ferreira, R., Silva Conceição, S., Ugulino Lima, E., Ferreira de Oliveira Neto, C., Rodrigues Galvão, J., … de Jesus Matos Viegas, I. (2022). Copper Toxicity in Plants: Nutritional, Physiological, and Biochemical Aspects. IntechOpen. doi: 10.5772/intechopen.105212

Madejón, P., Ramírez-Benítez, J.E., Corrales, I., Barceló, J., & Poschenrieder, C. (2009). Copper-Induced Oxidative Damage and Enhanced Antioxidant Defenses in the Root Apex of Maize Cultivars Differing in Cu Tolerance. Environ. Exp. Bot., 67: 415–420.

Fidalgo, F., Azenha, M., Silva, A. F., Santiago, A., Ferraz, P., & Teixeira, J. (2013). Copper-induced stress in Solanum nigrum L. And antioxidant defense system responses. Food and Energy Security, 2(1), 70-80. https://doi.org/10.1002/fes3.20.

Yruela, I. (2005). Copper in plants. Braz. J. Plant Physiol., 17(1): 145-156.

Alejandro, S., Höller, S., Meier, B., & Peiter, E. (2020). Manganese in Plants: From Acquisition to Subcellular Allocation. Frontiers in Plant Science, 11, 517877. https://doi.org/10.3389/fpls.2020.00300

Millaleo, R., Reyes-Diaz, M., Ivanov, A.G., Mora, M.L., & Alberdi, M. (2010). Manganese essential and toxic element for plants: transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 10 (4): 470 – 481

Schmidt, S. B., & Husted, S. (2019). The Biochemical Properties of Manganese in Plants. Plants, 8(10). https://doi.org/10.3390/plants8100381

Andresen, E., Peiter, E., & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany, 69(5), 909-954. https://doi.org/10.1093/jxb/erx465

Wang, X., Ai, S., & Liao, H. (2022). Deciphering Interactions between Phosphorus Status and Toxic Metal Exposure in Plants and Rhizospheres to Improve Crops Reared on Acid Soil. Cells, 12(3), 441. https://doi.org/10.3390/cells12030441

Avila, D. S., Puntel, R. L., & Aschner, M. (2013). Manganese in Health and Disease. Metal Ions in Life Sciences, 13, 199. https://doi.org/10.1007/978-94-007-7500-8_7

Jannah, A.F.R., Abror, M., & Saiful Arifin, S. (2022). Effectiveness of Manganese (Mn) on Growth, Production and Chlorophyll Content of Mustard Greens (Brasica rapa L.) With Wick System Hydroponic IOP Conf. Ser.: Earth Environ. Sci. 1104 012004

Mousavi, S.R., Shahsavari, M., & Rezaei, M. (2011). A General Overview On Manganese (Mn) Importance For Crops Production. Aust. J. Basic & Appl. Sci., 5(9): 1799-1803.

Zewide, I., & Sherefu, A. (2021). Review Paper on Effect of Micronutrients for Crop Production. J. Nutrition and Food Processing, 4(7); DOI:10.31579/2637-8914/063.

Hawson, M. (2016). Manganese deficiency in vegetables. Department of Primary Industries and Regional Development’s, Agriculture and Food Division. https://www.agric.wa.gov.au/vegetables/manganese-deficiency-vegetables

Brouder, S., Hofmann, B., Kladivko, E., Turco, R., & Bongen, A. (2003). Purdue University Cooperative Extension Service. Agronomy Guide AY-276-W

Ceballos-Laita, L., Gutierrez-Carbonell, E., Imai, H., Abadía, A., Uemura, M., Abadía, J., & López-Millán, A. F. (2018). Effects of manganese toxicity on the protein profile of tomato (Solanum lycopersicum) roots as revealed by two complementary proteomic approaches, two-dimensional electrophoresis and shotgun analysis. Journal of Proteomics, 185, 51-63. https://doi.org/10.1016/j.jprot.2018.06.016

Ceballos-Laita, L., Gutierrez-Carbonell, E., Takahashi, D., Lonsdale, A., Abadía, A., Doblin, M. S., Bacic, A., Uemura, M., Abadía, J., & López-Millán, A. F. (2020). Effects of Excess Manganese on the Xylem Sap Protein Profile of Tomato (Solanum lycopersicum) as Revealed by Shotgun Proteomic Analysis. International Journal of Molecular Sciences, 21(22). https://doi.org/10.3390/ijms21228863

Li, J., Jia, Y., Dong, R., Huang, R., Liu, P., Li, X., Wang, Z., Liu, G., & Chen, Z. (2019). Advances in the Mechanisms of Plant Tolerance to Manganese Toxicity. International Journal of Molecular Sciences, 20(20). https://doi.org/10.3390/ijms20205096

Fernando, D. R., & Lynch, J. P. (2015). Manganese phytotoxicity: New light on an old problem. Annals of Botany, 116(3), 313-319. https://doi.org/10.1093/aob/mcv111

Sensorex (2021). Determining the optimal liquid fertilizer for agriculture. Sensorez Agriculture and Farming. https://sensorex.com

Mamutov, B., Butkov, E., Hamzayev, A., Sherkuziev, D., Aripov, K., Ergasheva, F. & Ismoilova, K. (2021). Application of mineral fertilizers to increasing soil moisture and growth of forest seedlings for creation forest crops in Western Tien-Shan. E3S Web Conf., 304 (2021) 03007

79. Amit, S.K., Uddin, M.M., Rahman, R. Islam, S.M.R. & Khan, M.S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agric & Food Secur 6, 51. https://doi.org/10.1186/s40066-017-0130-8

80. van 't Hag, L., Danthe, J., Handschin, S., Mutuli, G.P., Mbuge, D. & Mezzenga, R. (2020). Drying of African leafy vegetables for their effective preservation: the difference in moisture sorption isotherms explained by their microstructure. Food Funct., 11: 955-964. DOI https://doi.org/10.1039/C9FO01175G

Liu, S., Roopesh, M.S. Tang, J., Wu, Q. & Qin, W. (2022). Recent development in low-moisture foods: Microbial safety and thermal process. Food Research International, 155,111072. https://doi.org/10.1016/j.foodres.2022.111072.

Gill, K.S. (2022). Fertilizer Effects on Soil Moisture Changes during Crop Growing Seasons of Dryland Agriculture in Northwestern Alberta, Canada. Journal of Agricultural Science; 14(3): 51-65. doi:10.5539/jas.v14n3p51

Chtouki, M., Laaziz, F., Naciri, R. Garré, S., Nguyen, F. & Oukarroum, A. (2022). Interactive effect of soil moisture content and phosphorus fertilizer form on chickpea growth, photosynthesis, and nutrient uptake. Sci Rep 12, 6671 https://doi.org/10.1038/s41598-022-10703-0

Subbani, A., Tariq, M., Jafar, S., Latif, R., Khan, M., Iqbal, M.S. & Iqbal, M.S. (2012). Role of soil moisture in fertilizer use efficiently for rained areas- A Review. Journal of Biology, Agriculture and Healthcare, 2(11): 1-9.

Jiang, M., Dong, C., Bian, W., Zhang, W., & Wang, Y. (2024). Effects of different fertilization practices on maize yield, soil nutrients, soil moisture, and water use efficiency in northern China based on a meta-analysis. Scientific reports, 14(1), 6480. https://doi.org/10.1038/s41598-024-57031-z

Zhang, Y., Xue , J., Zhai , J., Zhang, G., Zhang, W., Wang, K., Ming I, B., Hou , P., Xie , R., Liu , C. & Li, S. (2021). Does nitrogen application rate affect the moisture content of corn grains? Journal of Integrative Agriculture, 20(10): 2627-2638, https://doi.org/10.1016/S2095-3119(20)63401-3.

Igor, K. (2023). Critical periods of plant growth and development. Agronomist-expert Wonder LLC.

Owusu-Sekyere, A. (2021). Micronutrients use efficiency and dry matter yield of annual crops as affected by inorganic and organic amendments. Journal of Plant Nutrition, 44 (15), 2245–2257. https://doi.org/10.1080/01904167.2021.1889586

Yuan-meng, Z.H.A.N.G., Jun, X.U.E., Juan, Z.H.A.I., Guo-qiang, Z.H.A.N.G., Wan-xu, Z.H.A.N.G., Ke-ru, W.A.N.G., Bo, M.I.N.G., Peng, H.O.U., Rui-zhi, X.I.E., Chao-wei, L.I.U. & Shao-kun, L.I. (2021). Does nitrogen application rate affect the moisture content of corn grains?, Journal of Integrative Agriculture, 20(10): 2627-2638. https://doi.org/10.1016/S2095-3119(20)63401-3.

Mediani, A., Hamezah, H. S., Jam, F. A., Mahadi, N. F., Chan, S. X. Y., Rohani, E. R., Che Lah, N. H., Azlan, U. K., Khairul Annuar, N. A., Azman, N. A. F., Bunawan, H., Sarian, M. N., Kamal, N., & Abas, F. (2022). A comprehensive review of drying meat products and the associated effects and changes. Frontiers in nutrition, 9, 1057366. https://doi.org/10.3389/fnut.2022.1057366

Saha, S. (2020). “IMF: To Enhance the Shelf-Life of Food”, International Journal for Modern Trends in Science and Technology, 6(10): 103-108, 2020. DOI: https://doi.org/10.46501/IJMTST061018

Nielsen, S.S. (2010). Determination of Moisture Content. In: Nielsen, S.S. (eds) Food Analysis Laboratory Manual. Food Science Texts Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1463-7_3

Physics Forums (2019). What is the relationship between specific gravity and dilution? https: www.physicsforums.com/threads/what-is-the-relationship-between-specific-gravity-and dilution.978614/#google_vignette.

Kaiser, D. & Rosen, C. (2023). Copper for crop production. University of Minnesota Extension

96. Bloodnick, Ed. (2014). Role of Copper in Plant Culture. PT Premier Tech Growers and Consumers. https://www.pthorticulture.com › en-us › training-center

Chen, G., Li, J., Han, H., Du, R., & Wang, X. (2022). Physiological and Molecular Mechanisms of Plant Responses to Copper Stress. International journal of molecular sciences, 23(21), 12950. https://doi.org/10.3390/ijms232112950

Similar Articles

You may also start an advanced similarity search for this article.