FREQUENTIST APPROACH FOR PARAMETRIC-SURVIVAL MODELS WITH APPLICATION TO RIGHT CENSORED LIVER CIRRHOSIS DATA
Abstract
The aim of this study was to fit an appropriate parametric survival model to right-censored liver cirrhosis data using the frequentist approach. Secondary data obtained from selected hospital facilities were used in this study. The collected data were analyzed using survival analysis. The Global test results confirmed that the constant hazard assumption was met. The results of the model comparison using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) revealed that the Weibull proportional hazard (PH) model and the lognormal accelerated failure time (AFT) model outperformed the other models considered in this study. Overall, the lognormal AFT model outperformed the Weibull PH model. Based on this model, it was discovered that drugs and liver status were significant predictors of survival in patients with liver cirrhosis. Based on these findings, it was recommended that patients with liver cirrhosis who were on drugs should adhere strictly to their medication and also consider regular liver function tests to ensure that their liver is in good state.
Keywords:
The researcher will employ parametric PH and AFT models to determine the factors affecting the survival of patients with liver cirrhosis using the frequentist approachDownloads
Published
DOI:
https://doi.org/10.5281/zenodo.14719651Issue
Section
How to Cite
License
Copyright (c) 2024 Abubakar Muhammad Auwal, w.b. yahya, Daniel Victoria , Ahmed Ibrahim

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abadi, A.; Yavari, P.; Dehghani-Arani, M.; Alavi-Majd, H.; Ghasemi, E.; Amanpour, F. & Bajdik, C. (2014). Cox models for survival analysis according to breast cancer treatment. Iranian journal of cancer prevention, 7(3), 124–149, 2018.
Abolghasemi, J., M. N. Toosi, M. Rasouli, and H. Taslimi (2018). Survival analysis of patients with liver cirrhosis after transplantation using accelerated failure time models. Biomedical Research and Therapy, 5(11), 2789-2796.
Abolghasemi, J., M. N. Toosi, M. Rasouli, and H. Taslimi (2018). Survival analysis of patients with liver cirrhosis after transplantation using accelerated failure time models. Biomedical Research and Therapy, 5(11), 2789-2796.
Abrahamowicz, M., MacKenzie, T., & Esdaile, J. M. (1996). Time-dependent hazard ratio: modeling and hypothesis testing with application in lupus nephritis. Journal of the American Statistical Association, 91, 1432-1439.
Achilonu, O. J., Fabian, J., & Musenge, E. (2019). Modeling long-term graft survival with time-varying covariate effects: an application to a single kidney transplant center in Johannesburg, South Africa. Frontiers in Public Health, 7, 201.
Adedotun, A. F., Odusanya, O. A, Okagbue, H. I. & Ogundile, O. P. (2022). Analysis of reported cases of diabetes in Nigeria: A survival analysis approach. International Journal of Sustainable Development and Planning, 17(2), 643–647.
Adeniran, A. T., Faweya, O., Ogunlade, T. O., and Balogun, K. O. (2020). Derivation of Gaussian Probability Distribution: A New Approach. Applied Mathematics, 11(06), 436.
Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE
Transactions on, 19(6), 716–723.
Alexander, D., and Abdullah, S. (2022, February). Bayesian Accelerated Failure Time Model and Its Application to Preeclampsia. In International Conference on Mathematics, Geometry, Statistics, and Computation (IC-MaGeStiC 2021) (152-155). Atlantis Press.
Angela, C., & Uju, O. (2015). Determinants of mortality in the under-five years in Nigeria: an application of cox proportional hazard and cox frailty models. IOSR J Math Ver I [Internet], 11(4), 2278-5728.
Ashraf-Ul-Alam, M., and Khan, A. A. (2021). Generalized topp-leone-weibull aft modeling: Bayesian analysis using mcmc tools with r and stan. Austrian Journal of Statistics, 50(5), 52-76.
Asiedu-Addo, S. K., & Nwi-Mozu, I. & Ali, M. (2015). Modeling the survival of patients with prostate cancer patients in komfo anokye teaching hospital, Ghana. Int J Appl Sci Technol. 5(6).
Badmus, N. I., & Olanrewaju, F. & Adeniran, A. T. (2020). Modeling COVID-19 Data using a Beta Double exponential model. Asian journal of research in infectious diseases, 5(6), 66–79.
Bataller, R., & Brenner, D. A. (2019). Liver fibrosis. The Journal of clinical investigation, 115(2), 209-218.
Belay, A., Derebew, B. and Abebaw, S. (2021). Survival analysis of the time-to-recovery of patients with diabetes at Minlik Referral Hospital, Ethiopia: Retrospective cohort study. Research square, 1–25.
Collett, D. (2003). Modeling survival data in medical research. Boca Raton, Florida: Chapman & Hall/CRC.
Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B 34, 187-220.
Cox, D. R. (1975). Partial likelihood. Biometrika, 62, 269–276.
David G. Kleinbaum & Mitchel, K. (1996). Survival analysis: A self-learning text. Second Edition. Springer.
Fagbamigbe, A. F., Karlsson, K., Derks, J., & Petzold, M. (2021). Performance evaluation of survival regression models for the analysis of Swedish dental implant complication data with frailty. Plos one, 16(1), 1–16.
Faruk, A. (2018). Comparison of proportional hazards and accelerated failure time models for analyzing first birth interval survival data. In Journal of Physics: Conference Series. 974(1), 1–11.
Folorunso, S. A., & Osanyintupin, O. D. (2018). Comparison of Cox Proportional Hazard Model and Accelerated Failure Time (Aft) Models: An Application to Neonatal Jaundicee. International journal of public health safe, 3(171), 1-6.
Gani, R. A. (2021). Survival analysis of hospitalized patients with liver cirrhosis in Jakarta: 2 years follow-up study. The Indonesian Journal of Gastroenterology, Hepatology, and Digestive Endoscopy, 22(1), 9-15.
Gatabazi, P. (2014). Survival analysis and its stochastic process approach with application to diabetes data. Master’s thesis, University of Johannesburg. Retrieved from https://ujcontent.uj.ac.za/vital/access/manager/Index?site_name=Research%20Output.
Gersten, O. & Wilmoth, J. R. (2002). Cancer transition in Japan since 1951. Demography Resource. 7:271-306.
Globacon (2020). World Health Organization-Internal Agency for Research on Cancer. Number of new cases in 2020, both sexes, all ages.
Grattagliano, I., Ubaldi, E., Bonfrate, L., & Portincasa, P. (2011). Management of liver cirrhosis between primary care and specialists. World journal of gastroenterology: WJG, 17(18), 2273.
Gupta, R. D., and Kundu, D. (2001). Theory & methods: Generalized exponential distributions. Australian and New Zealand Journal of Statistics, 41(2), 173-188.
Gupta, R. D., and Kundu, D. (2007). Generalized exponential distribution: Existing results and some recent developments. Journal of Statistical planning and inference, 137(11), 3537-3547.
Gutierrez, R. G. (2002). Parametric and shared frailty survival models. Stata J. 2(1), 22–44.
Hawa, S. (2023). Survival after Hospital Admission in Adults with Liver Cirrhosis in California.
Hordofa, S. B., and Debelo, O. (2020). Statistical analysis of the survival of patients with diabetes mellitus: a case study at Nekemte Hospital, Wollega, Ethiopia. American journal of Biometrics and Biostatistics, 4(1), 6-12.
Huang, D. Q., Terrault, N. A., Tacke, F., Gluud, L. L., Arrese, M., Bugianesi, E., & Loomba, R. (2023). Global epidemiology of cirrhosis—etiology, trends and predictions. Nature reviews Gastroenterology & hepatology, 20(6), 388-398.
Isaac, N. (2019). Robustness of Semi-Parametric survival model: Simulation studies and application to clinical data (Master’s thesis, East Tennessee State University). Retrieved from https://dc.etsu.edu/etd.
Kaplan, E. L. & Meier, L. P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53:457–481.
Karasoy, D. (2020). Joint modeling of longitudinal measurements and parametric survival data for primary biliary cirrhosis study. Pakistan Journal of Statistics and Operation Research, 16(2), 295–304.
Kassa, T. H. (2018). Bayesian survival analysis of patients with diabetes mellitus: a case study in tikur vanessa specialized hospital, Addis Ababa, Ethiopia. Journal of Reliability and Statistical Studies, 37-56.
Kay, R, & Kinnersley N. (2002). The use of the accelerated failure time model as an alternative
Khanal, S. P., Sreenivas, V., & Acharya, S. K. (2019). Comparison of the Cox proportional hazards model and lognormal accelerated failure time model: Application in the time-to-event analysis of acute liver failure patients in India. Nepalese Journal of Statistics, 3, 21-40.
Kleinbaum, D. G., & Klein, M. (1996). Survival analysis, a self-learning text. springer.
Korosteleva, O. (2009). Clinical Statistics: Clinical trials, survival analysis, and longitudinal data analysis. Jones and Bartlett.
Lahham, H. N. M. (2009). Cardiovascular Diseases and Risk Factors among Diabetic Patients. Nablus District, West Bank, Palestine.
Lawless, J. F. (2011). Statistical models and methods for lifetime data. John Wiley & Sons.
Lee, E. T., & Go, O. T. (1997). Survival analysis in public health research. Annual review of public health, 18(1), pp. 105-134.
Llovet, J. M., Zucman-Rossi, J., & Pikarsky, E. al. (2016). Hepatocellurar carcinoma. Nat Rev Dis Primers.
Lomo, S. I., Sugiyarto, S., & Darmawan, E. (2021). A Survival Analysis with cox regression interaction Model of Type 2 Diabetes Mellitus in Indonesian. Journal Kedokteran dan Kesehatan, 15(1). 81–90.
Majeed, A. F. (2020). Accelerated failure time models: An application in insurance attrition. The Journal of Risk Management and Insurance. Thailand: The University, 2020.
Mardhiah, K., Wan-Arfah, N., Naing, N. N., Hassan, M. R. A., and Chan, H. K. (2022). Comparison of Cox proportional hazards model, Cox proportional hazards model with time-varying coefficients model, and lognormal accelerated failure time model: Application to time-to-event analysis of melioidosis patients. Asian Pacific Journal of Tropical Medicine, 15(3), 128-134.
Morina D. Navarro, A. (2014). The r package surveil for simulating simple and complex survival data. Journal of Statistical Software, 59(2).
Mudholkar, G. S., D. K. Srivastava, and M. Freimer (1995). The exponentiated Weibull family: A reanalysis of the bus-motor-failure data. Technometrics, 37(4), 436-445.
Mustefa, Y. A., and Chen, D. G. (2021). Accelerated failure-time model with weighted least-squares estimation: application on survival of HIV positives. Archives of Public Health, 79(1), 1-7.
Naim, S., and Mahmudah, M. (2022). Survival Time of Patients with Diabetes Mellitus undergoing Hemodialysis: A Study Using Survival Analysis. Acta Medica Iranica, 60(2), 115-119.
Nardi, A., & Schemper. M. (2003). Comparison of the Cox and parametric models in clinical studies. Statistics in Medicine, 2003:3597–3610, 2003.
Qi, Z. (2009). Comparison of Proportional Hazards and Accelerated Failure Time Models (Master’s thesis, University of Saskatchewan Saskatoon, Saskatchewan).
Quantin, C., Moreau, T., Asselain, B., Maccario, J., & Lellouch, J. (1996). A regression survival model for testing the proportional hazards hypothesis. Biometrics, 874-885.
Rivera, S. L., Martin, J., & Landry, J. (2019). Acute and Chronic Hypertension: What Clinicians should knows for Diagnosis and Management. Critical care nursing clinics of North America, 31(1), 97-108.
Saikia, R., & Barman, M. P. (2017). A review of accelerated failure time models. International Journal of Statistics and Systems, 12(2), 311-322.
Schwarz, G. et al. (1978). The dimension of the model is estimated. The annals of statistics, 6(2):461– 464.
Sepanlou, S. G., Safiri, S., Bisignano, C., Ikuta, K. S., Merat, S., Saberifiroozi, M., ... & Padubidri, J. R. (2020). Global, regional, and national burdens of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet gastroenterology & hepatology, 5(3), 245-266.
Shankar, P. K., Screenivas, V. & Subrat, K. A. (2019). Comparison of the Cox Proportional Hazards Model and the Lognormal Accelerated Failure Time Model: Application to the Time-to-Event Analysis of Acute Liver Failure Patients in India. Nepalese Journal of Statistics, 3, 21 -40.
Spiegelhalter, D. J., Best, N. G., Carlin BP. & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583–639.
Steyn, K., Sliwa, K., Hawken, S., Commerford, P., Damasceno, A., Ounpuu S. & Yusuf, S. (2005). Risk factors Associated with Myocardial Infarction in Africa. The Interheart Africa Study. Circulation, 112: 3554-3561.
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin, 71(3), 209-249.
Susan, G. W. (2011). Frailty models with applications in medical research: observed and simulated data (Master’s thesis, University of Nairobi.
Teni, D. A., Enquoselassie, F., & Atsmeg, C. (2019). Survival analysis of patients with diabetes mellitus using parametric, non-parametric, and semi-parametric approaches: Addis Ababa, Ethiopia. Ethiopian e-Journal for Research and Innovation Foresight, 7(1).
Uloko, A. E., Musa, B. M., Ramalan, M. A., Gezawa, I. D., Puepet, F. H., Uloko, A. T., ... & Sada, K. B. (2018). Prevalence and risk factors of diabetes mellitus in Nigeria: a systematic review and meta-analysis. Diabetes Therapy, 9(3), 1307-1316.
Vincent, A. M. & Ismaila, A. B. (2020). Parametric survival modeling of tuberculosis data: A case study at the Federal Medical Center, Bida, Nigeria. Journal of Modern Applied Science, 14(7): 1-14.
WHO and AFRO (2005). Cardiovascular Diseases in the African Region: Current State and Perspectives Report of the Regional director. Fifty-fifth Sessions. (Maputo, Mozambique.
WHO (2002). Diabetes's cost. Fact Sheet No. 236.
Xin, J. (2009). Frailty models for predicting survival after rectum cancer diagnosis. Master’s dissertation, Ghent University, Belgium.
Zahmatkeshan, M., Amirian, A., Najib, K., & Nikeghbalian, S. (2017). Investigation of Post-transplant Early Infections and Their Risk Factors. Sadra Medical Journal, 3(2), 107-118.
Zaman, Q. & Pfeiffer. K. P. (2011). Survival analysis in medical research. http://interstat.statjournals.net/YEAR/2011/articles/1105005.pdf, (4):1(36).
Zhao, Z., Huo, L., Wang, L., Wang, L., Fu, Z., Li, Y., & Wu, X. (2019). Survival of Chinese with type 2 diabetes and diabetic kidney disease: a 12-year follow-up cohort. BMC Public Health, 19(1), 1-8.
Zhou, W. C., Zhang, Q. B., & Qiao, L. (2014). Pathogenesis of liver cirrhosis. World journal of gastroenterology: WJG, 20(23), 7312.