SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE OF BIS [1-METHOXY-2, 2, 2-TRIS-(PYRAZOL-1-YLΚN2) ETHANE]-COBALT (II) BIS-PERCHLORATE
Abstract
Modern inorganic chemistry research is predominantly centered around the extensive field of coordination chemistry, with a particular focus on transition metals. Transition metals, characterized by their incomplete d or f subshells in their elemental or ionic states, play a crucial role in shaping the landscape of coordination chemistry research (Huheey et al., 1993). This study explores the unique attributes of transition metals, emphasizing their multiple valence states and the resulting dominance of complex formations in their chemistry. In the context of the periodic table, transition metals within the same period exhibit gradual changes in atomic and ionic radii, along with ionization potentials. These incremental variations contribute to the distinctive characteristics of transition metals and influence their behavior in chemical reactions. Notably, the prevalence of multiple valence states further accentuates the propensity of transition metals to form intricate coordination complexes. The chemistry of transition elements is exemplified by the vivid and paramagnetic coordination complexes they often produce. The incorporation of these transition metal complexes is not only aesthetically significant, given their colorful nature, but also holds practical implications. A substantial number of these complexes serve as effective catalysts, playing a pivotal role in contemporary applied chemistry. This research delves into the fundamental principles governing the chemistry of transition metals, shedding light on their contributions to coordination chemistry and their widespread applications in catalysis. The study aims to deepen our understanding of the unique features of transition metals, emphasizing their significance in both theoretical and practical aspects of inorganic chemistry.
Keywords:
Transition Metals, Coordination Chemistry, Valence States, Complex Formations, CatalysisDownloads
Published
DOI:
https://doi.org/10.5281/zenodo.10534473%20Issue
Section
How to Cite
License
Copyright (c) 2024 Ganna V. Lyubartseva

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Amir, M., Kumar, H., & Khan, S. A. (2008). Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents. Bioorganic & Medicinal Chemistry Letters, 18(3), 918– 922. https://doi.org/10.1016/j.bmcl.2007.12.043
Azarifar, D., & Shaebanzadeh, M. (2002). Synthesis and Characterization of New 3,5-Dinaphthyl Substituted 2Pyrazolines and Study of Their Antimicrobial Activity. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 7(12), 885–895. https://doi.org/10.3390/71200885
Bainbridge, H., Salem, A., Tijssen, R. H. N., Dubec, M., Wetscherek, A., Van Es, C., Belderbos, J., Faivre-Finn, C., McDonald, F., & lung tumour site group of the international Atlantic MR-Linac Consortium. (2017). Magnetic resonance imaging in precision radiation therapy for lung cancer. Translational Lung Cancer Research, 6(6), 689–707. https://doi.org/10.21037/tlcr.2017.09.02
Czarnek, K., Terpiłowska, S., & Siwicki, A. K. (2015). Selected aspects of the action of cobalt ions in the human body. Central-European Journal of Immunology, 40(2), 236–242. https://doi.org/10.5114/ceji.2015.52837 Davies, D. T. (1997). Aromatic Heterocyclic Chemistry. Oxford University Press.
Fustero, S., Sánchez-Roselló, M., Barrio, P., & Simón-Fuentes, A. (2011). From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chemical Reviews, 111(11), 6984–7034. https://doi.org/10.1021/cr2000459
Hart, K. F., Joe, N. S., Miller, R. M., Nash, H. P., Blake, D. J., & Morris, A. M. (2018). Synthesis and Characterization of trans-Dichlorotetrakis(imidazole)cobalt(III) Chloride: A New Cobalt(III) Coordination Complex with Potential Prodrug Properties. Bioinorganic Chemistry and Applications, 2018, 4560757.https://doi.org/10.1155/2018/4560757
Huheey, J. E., Ellen, A., Keiter, E. A., & Keiter, R. (1993). Inorganic Chemistry: Principles of Structure and Reactivity (4th ed.). Harper Collins: New York.
Keter, F. K., & Darkwa, J. (2012). Perspective: The potential of pyrazole-based compounds in medicine. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 25(1), 9–21. https://doi.org/10.1007/s10534-011-9496-4
Lyubartseva, G., & Parkin, S. (2009). Bis(tripyrazol-1-ylmethane)nickel(II) tetra-cyanidonickelate(II) dihydrate. Acta Crystallographica Section E: Structure Reports Online, 65(Pt 12), m1530.
https://doi.org/10.1107/S1600536809046108
Lyubartseva, G., & Parkin, S. (2010a). Tetra-ethyl-ammonium (2,2′-bipyridine)tetra-cyanidocobaltate(III) sesquihydrate acetonitrile solvate. Acta Crystallographica Section E: Structure Reports Online, 66(Pt 4), m475–m476. https://doi.org/10.1107/S1600536810011311
Lyubartseva, G., & Parkin, S. (2010b). Dichloridobis(3,4,5-trimethyl-1H-pyrazole-κN)cobalt(II). Acta Crystallographica. Section E, Structure Reports Online, 66(Pt 9), m1134. https://doi.org/10.1107/S160053681003254X
Lyubartseva, G., Parkin, S., Coleman, M. D., & Mallik, U. P. (2014). Crystal structure of 1-meth-oxy-2,2,2tris(pyrazol-1-yl)ethane. Acta Crystallographica. Section E, Structure Reports Online, 70(Pt 9), o10471048. https://doi.org/10.1107/S1600536814018789
Lyubartseva, G., Parkin, S., & Mallik, U. P. (2011). Bis[tris-(1H-pyrazol-1-yl-κN)methane]-nickel(II) bis-{[tris(1Hpyrazol-1-yl-κN)methane]-tris-(thio-cyanato-κN)nickelate(II)} methanol disolvate. Acta Crystallographica. Section E, Structure Reports Online, 67(Pt 12), m1656-1657. https://doi.org/10.1107/S1600536811045144
Lyubartseva, G., Parkin, S., & Mallik, U. P. (2012). Bis[tris-(3,5-dimethyl-1H-pyrazol-1-yl-κN(2))methyl]sodium trifluoro-methane-sulfonate. Acta Crystallographica. Section E, Structure Reports Online, 68(Pt 7), m973. https://doi.org/10.1107/S1600536812028413
Lyubartseva, G., Parkin, S., & Mallik, U. P. (2013a). Bis[1-meth-oxy-2,2,2-tris-(pyrazol-1-yl-κN (2))ethane]nickel(II) bis-(tri-fluoro-methane-sulfonate) dihydrate. Acta Crystallographica. Section E, Structure Reports Online, 69(Pt 10), m532-533. https://doi.org/10.1107/S1600536813024252
Lyubartseva, G., Parkin, S., & Mallik, U. P. (2013b). Bis[1-meth-oxy-2,2,2-tris-(pyrazol-1-yl-κN (2))ethane]nickel(II) bis-(tri-fluoro-methane-sulfonate) methanol disolvate. Acta Crystallographica. Section E, Structure Reports Online, 69(Pt 10), m537. https://doi.org/10.1107/S1600536813024653
Lyubartseva, G., Parkin, S., Mallik, U. P., & Jeon, H. K. (2012). Tetra-ethyl-ammonium tris-(thio-cyanatoκN)[tris(1H-pyrazol-1-yl-κN(2))methane]-nickelate(II). Acta Crystallographica. Section E, Structure Reports Online, 68(Pt 7), m888. https://doi.org/10.1107/S1600536812024774
Lyubartseva, G., Parkin, S., Ngongoni S., & Mallik, U. P. (2016). Synthesis, Characterization and Crystal Structure of Bis[1-methoxy-2,2,2-tris-(pyrazol-1-yl-κN2)ethane]-copper(II) Bis-perchlorate. Journal of Chemistry and Chemical Engineering, 10(5). https://doi.org/10.17265/1934-7375/2016.05.002
Maria, L., Cunha, S., Videira, M., Gano, L., Paulo, A., Santos, I. C., & Santos, I. (2007). Rhenium and technetium tricarbonyl complexes anchored by pyrazole-based tripods: Novel lead structures for the design of myocardial imaging agents. Dalton Transactions, 28, 3010–3019. https://doi.org/10.1039/B705226J
Padhy, G., Panda, J., & Behera, A. (2017). Synthesis and characterization of novel benzimidazole embedded 1,3,5trisubstituted pyrazolines as antimicrobial agents. Journal of the Serbian Chemical Society, 82, 985– 993. https://doi.org/10.2298/JSC160604089P
Parkin, S. (2000). Expansion of scalar validation criteria to three dimensions: The R tensor. Acta Crystallographica. Section A, Foundations of Crystallography, 56 (Pt 2), 157–162. https://doi.org/10.1107/S010876739901497X
Parkin, S., & Hope, H. (1998). Macromolecular Cryocrystallography: Cooling, Mounting, Storage and Transportation of Crystals. Journal of Applied Crystallography, 31(6), 945–953. https://doi.org/10.1107/S0021889898005305
Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., & Manjunatha, B. R. B. and H. (2010, February 28). DPPH Scavenging Assay of Novel 1,3-disubstituted-1H-pyrazol-5-ols and their in silico Studies on Some Proteins Involved in Alzheimers Disease Signaling Cascade. Letters in Drug Design & Discovery. http://www.eurekaselect.com/85733/article
Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica. Section A, Foundations of Crystallography, 64(Pt 1), 112–122. https://doi.org/10.1107/S0108767307043930
Spek, A. (2009). Structure validation in chemical crystallography. Acta Crystallographica. Section D, Biological Crystallography, 65, 148–155. https://doi.org/10.1107/S090744490804362X