QUANTUM CRYPTOGRAPHY AND ITS IMPLICATIONS IN CYBERSECURITY: SECURING COMMUNICATION IN THE QUANTUM ERA.
Abstract
Secure communication can undergo revolutions in the innovative field of quantum cryptography. Quantum cryptography leverages the concepts of quantum mechanics to offer previously unheard-of levels of security, in contrast to classical cryptographic techniques, which rely on mathematical complexity. The foundational ideas of quantum cryptography, and its current applications and cybersecurity implications, are examined in this paper. This paper aims to provide a comprehensive understanding of quantum cryptography and its transformative impact on secure communication by exploring the special properties of quantum mechanics and their application in cryptographic protocols. Thanks to ongoing research and technological advancements, quantum cryptography has advanced significantly in recent years. Quantum key distribution (QKD), quantum secure direct communication (QSDC), and other parts of quantum cryptography protocols are among the areas in which these developments are concentrated. Among the noteworthy accomplishments are the creation of useful QKD systems, the demonstration of quantum communication over great distances, and the investigation of new quantum cryptographic primitives (Lella& Schmid, 2023)
Keywords:
Quantum Cryptography, Quantum Key Distribution, Quantum Mechanics, Secure Communication, CybersecurityDownloads
Published
DOI:
https://doi.org/10.5281/zenodo.13709957%20Issue
Section
How to Cite
License
Copyright (c) 2024 WHYTE, Stella T.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
M. Janbeglou, H. Naderi and N. Brownlee, "Effectiveness of DNS-Based Security Approaches in Large-Scale
Networks, 2014 28th International Conference on Advanced Information Networking and Applications
Workshops, Victoria, BC, Canada, 2014, pp. 524-529, http://doi: 10.1109/WAINA.2014.87.
Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell's inequality using time-varying
analyzers. Physical Review Letters, 49(25), 1804-1807
Sonko, S., Ibekwe, K. I., Ilojianya, V. I., Etukudoh, E/. A., &Fabuyide, A. (2024). Quantum Cryptography and
U.S. Digital Security: A Comprehensive Review: Investigating the Potential Of Quantum Technologies
In Creating Unbreakable Encryption And Their Future In National Security. Computer Science & IT
Research Journal, 5(2), 390-414. https://doi.org/10.51594/csitrj.v5i2.790
Bennett, C. H., Brassard, G., & Mermin, N. D. (1992). Quantum cryptography without Bell's theorem. Physical
Review Letters, 68(5), 557-559.
Daemen, J., & Rijmen, V. (2000). Rijndael for AES. https://doi.org/10.1007/0-387-23483-7_35810.1007/0-387
-7_358
Dervisevic, E., Voznak, M., & Mehic, M. (2024). Large-scale quantum key distribution network simulator.
Journal of Optical Communications and Networking. 16(4), 449-461. https://doi.10.1364/JOCN.503356.
Einstein, A.(nd). Paradigm of Complex Probability and Heisenberg’s Quantum Uncertainty Principle. eBook.
https://doi.org:10.9734/bpi/mono/978-81-970122-5-9/CH5.
Ekert, A. K. (1991). Quantum cryptography is based on Bell's theorem. Physical Review Letters, 67(6), 661
Faruk, M. J. H., Tahora, S., Tasnim, M., Shahriar, H., and Sakib, N. (2022). A Review of Quantum
Cybersecurity: Threats, risks and opportunities. 2022 1st International Conference on AI in
Cybersecurity (ICAIC), 1-8, doi: 10.1109/ICAIC53980.2022.9896970.
Garms, L., Paraïso, T. K., Hanley, N., Khalid, A., Rafferty, C., Grant, J., Newman, J., Shields, A. J., Cid, C.,
and O’Neil, M. (2024). Experimental Integration of Quantum Key Distribution and Post‐Quantum
Cryptography in a Hybrid Quantum‐Safe Cryptosystem. Advanced Quantum Technologies, 7(4),
https://doi.org/10.1002/qute.202300304
Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics,
(1), 145-195.
ID
Quantique.
(n.d.).
Clavis2
Quantum
Key Distribution
https://www.idquantique.com/quantum-key-distribution/products/clavis2/
System.
Retrieved
from
Jornal He, YF. & Ma, WP. Quantum Inf Process (2017) 16: 252. https://doi.org/10.1007/s11128-017-1703- y
Jornal He, YF. & Ma, WP. Quantum Inf Process (2017) 16: 252. https://doi.org/10.1007/s11128
-1703- top of Forms.
Kamalesh, A., and Ratna, D. (2017). Secure and Efficient Constructions for Broadcast Encryption with
Personalized Messages. In Proceeding of Eleventh International Conference on Provable Security
(ProvSec 2017), Springer-Verlag, Germany
Ladd, T. D., F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. (2010). Quantum computers. Nature,
(7285), 45-53.
Lella, E., & Schmid, G. (2023). On the Security of Quantum Key Distribution Networks. 7(4),
https://doi.org/10.3390/cryptography7040053
Logeshwaran, L., Usha, K., Raju, K., Alsharif, M. H., Uthansakul, P., and Uthansakul, M.(2023). An Enhanced
Energy Optimization Model for Industrial Wireless Sensor Networks Using Machine Learning.
IEEE,l(11), 96343-96362. https://doi.org/10.1109/ACCESS.2023.3311854.
Ma, X., Lo, H.K. and Chen, K. (2018). Quantum cryptography: from key distribution to secure communication
networks. Nature Reviews Physics, 1(5), 281-292
Markus, C., Bert, G. and Michele, L. (2020). The ethics of cybersecurity. The International Library of Ethics,
Law and Technology, [online]. Available online: https://link.springer.com/book/10.1007/978-3-030-
-5
Mitra, S., Jana, B., Bhattacharya, S., Pal, P., and Poray, J. (2017). Quantum cryptography: Overview, security
issues and future challenges," 2017 4th International Conference on Opto-Electronics and Applied
Optics (Optronix), 1-7, doi: 10.1109/OPTRONIX.2017.8350006.
M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A.
Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y.
Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki,
H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, Sharpe, A. W., Yuan, Z. L., Shields, A. J., Uchikoga,
S., Legré, M., Robyr, S., Trinkler, P., Monat, L., Page, J. B., Ribordy, G., Poppe, A., Allacher, A.,
Maurhart, O., Länger, T., Peev, M., and Zeilinger, A.(2011). Field test of quantum key distribution in
the Tokyo QKD network. Optics Express, 19(11), 10387-10409.
Nielsen, M.A. and Chuang, I. L. (2010). Quantum Computation and Quantum Information: 10th Anniversary
Edition. Cambridge University Press.
Pirandola, S., Andersen, U. L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., ... & Gehring, T. (2019).
Advances in quantum cryptography. Advances in Optics and Photonics, 12(4), 1012-1236
Renner, R., and Wolf, R. (2023). Quantum Advantage in Cryptographyhttps://doi.org/10.2514/1.J062267
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dusek, M., Lütkenhaus, N., & Peev, M. (2009). Security of
practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301-1350.
Van Oorschot, P. C. (2022). Public key cryptography’s impact on society: how Diffie and Hellman changed the
world. In Democratizing Cryptography: The Work of Whitfield Diffie and Martin Hellman (pp. 19-56).
Wehner, S., Elkouss, D., & Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science,
(6412), eaam9288.
Whyte, S. T., Omoyiola, B. O., and Bennett, E.O. (2022). Blockchain Technology in Data Integrity Assurance,
ELSEVIER, https://dx.doi.org/10.2139/ssrn.404364
Whyte, S.T. (2021). Reliable Data Collection: A Tool for Data Integrity in Nigeria. Walden Dissertation and
Doctoral Studies Collection. Available online: https://scholarworks.walden.edu/egi/viewcontent.egi
Xu, F., and Ma, X. (2020). Quantum cryptography. In Quantum Communications and Quantum Imaging XVIII
(Vol. 11296, p. 112960G). International Society for Optics and Photonics.
Xu, G., Mao, J., Sakk, E., &Wang, S. P. (2023). An Overview of Quantum-Safe Approaches: Quantum Key
Distribution and Post-Quantum Cryptography, 57th Annual Conference on Information Sciences and
Systems (CISS), http://doi.org/10.1109/CISS56502.2023.10089619.