American International Journal of Computer Science and Information Technology (AIJCSIT)

QUANTUM CRYPTOGRAPHY AND ITS IMPLICATIONS IN CYBERSECURITY: SECURING COMMUNICATION IN THE QUANTUM ERA.

Authors

  • WHYTE, Stella T. Department of Computer Science, Rivers State University, P.H, Rivers State, Nigeria

Abstract

Secure communication can undergo revolutions in the innovative field of quantum cryptography. Quantum cryptography leverages the concepts of quantum mechanics to offer previously unheard-of levels of security, in contrast to classical cryptographic techniques, which rely on mathematical complexity. The foundational ideas of quantum cryptography, and its current applications and cybersecurity implications, are examined in this paper. This paper aims to provide a comprehensive understanding of quantum cryptography and its transformative impact on secure communication by exploring the special properties of quantum mechanics and their application in cryptographic protocols. Thanks to ongoing research and technological advancements, quantum cryptography has advanced significantly in recent years. Quantum key distribution (QKD), quantum secure direct communication (QSDC), and other parts of quantum cryptography protocols are among the areas in which these developments are concentrated. Among the noteworthy accomplishments are the creation of useful QKD systems, the demonstration of quantum communication over great distances, and the investigation of new quantum cryptographic primitives (Lella& Schmid, 2023)

Keywords:

Quantum Cryptography, Quantum Key Distribution, Quantum Mechanics, Secure Communication, Cybersecurity

Published

2024-09-06

DOI:

https://doi.org/10.5281/zenodo.13709957%20

How to Cite

WHYTE, S. T. (2024). QUANTUM CRYPTOGRAPHY AND ITS IMPLICATIONS IN CYBERSECURITY: SECURING COMMUNICATION IN THE QUANTUM ERA. American International Journal of Computer Science and Information Technology (AIJCSIT), 9(3), 16–28. https://doi.org/10.5281/zenodo.13709957

References

M. Janbeglou, H. Naderi and N. Brownlee, "Effectiveness of DNS-Based Security Approaches in Large-Scale

Networks, 2014 28th International Conference on Advanced Information Networking and Applications

Workshops, Victoria, BC, Canada, 2014, pp. 524-529, http://doi: 10.1109/WAINA.2014.87.

Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell's inequality using time-varying

analyzers. Physical Review Letters, 49(25), 1804-1807

Sonko, S., Ibekwe, K. I., Ilojianya, V. I., Etukudoh, E/. A., &Fabuyide, A. (2024). Quantum Cryptography and

U.S. Digital Security: A Comprehensive Review: Investigating the Potential Of Quantum Technologies

In Creating Unbreakable Encryption And Their Future In National Security. Computer Science & IT

Research Journal, 5(2), 390-414. https://doi.org/10.51594/csitrj.v5i2.790

Bennett, C. H., Brassard, G., & Mermin, N. D. (1992). Quantum cryptography without Bell's theorem. Physical

Review Letters, 68(5), 557-559.

Daemen, J., & Rijmen, V. (2000). Rijndael for AES. https://doi.org/10.1007/0-387-23483-7_35810.1007/0-387

-7_358

Dervisevic, E., Voznak, M., & Mehic, M. (2024). Large-scale quantum key distribution network simulator.

Journal of Optical Communications and Networking. 16(4), 449-461. https://doi.10.1364/JOCN.503356.

Einstein, A.(nd). Paradigm of Complex Probability and Heisenberg’s Quantum Uncertainty Principle. eBook.

https://doi.org:10.9734/bpi/mono/978-81-970122-5-9/CH5.

Ekert, A. K. (1991). Quantum cryptography is based on Bell's theorem. Physical Review Letters, 67(6), 661

Faruk, M. J. H., Tahora, S., Tasnim, M., Shahriar, H., and Sakib, N. (2022). A Review of Quantum

Cybersecurity: Threats, risks and opportunities. 2022 1st International Conference on AI in

Cybersecurity (ICAIC), 1-8, doi: 10.1109/ICAIC53980.2022.9896970.

Garms, L., Paraïso, T. K., Hanley, N., Khalid, A., Rafferty, C., Grant, J., Newman, J., Shields, A. J., Cid, C.,

and O’Neil, M. (2024). Experimental Integration of Quantum Key Distribution and Post‐Quantum

Cryptography in a Hybrid Quantum‐Safe Cryptosystem. Advanced Quantum Technologies, 7(4),

https://doi.org/10.1002/qute.202300304

Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Reviews of Modern Physics,

(1), 145-195.

ID

Quantique.

(n.d.).

Clavis2

Quantum

Key Distribution

https://www.idquantique.com/quantum-key-distribution/products/clavis2/

System.

Retrieved

from

Jornal He, YF. & Ma, WP. Quantum Inf Process (2017) 16: 252. https://doi.org/10.1007/s11128-017-1703- y

Jornal He, YF. & Ma, WP. Quantum Inf Process (2017) 16: 252. https://doi.org/10.1007/s11128

-1703- top of Forms.

Kamalesh, A., and Ratna, D. (2017). Secure and Efficient Constructions for Broadcast Encryption with

Personalized Messages. In Proceeding of Eleventh International Conference on Provable Security

(ProvSec 2017), Springer-Verlag, Germany

Ladd, T. D., F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. (2010). Quantum computers. Nature,

(7285), 45-53.

Lella, E., & Schmid, G. (2023). On the Security of Quantum Key Distribution Networks. 7(4),

https://doi.org/10.3390/cryptography7040053

Logeshwaran, L., Usha, K., Raju, K., Alsharif, M. H., Uthansakul, P., and Uthansakul, M.(2023). An Enhanced

Energy Optimization Model for Industrial Wireless Sensor Networks Using Machine Learning.

IEEE,l(11), 96343-96362. https://doi.org/10.1109/ACCESS.2023.3311854.

Ma, X., Lo, H.K. and Chen, K. (2018). Quantum cryptography: from key distribution to secure communication

networks. Nature Reviews Physics, 1(5), 281-292

Markus, C., Bert, G. and Michele, L. (2020). The ethics of cybersecurity. The International Library of Ethics,

Law and Technology, [online]. Available online: https://link.springer.com/book/10.1007/978-3-030-

-5

Mitra, S., Jana, B., Bhattacharya, S., Pal, P., and Poray, J. (2017). Quantum cryptography: Overview, security

issues and future challenges," 2017 4th International Conference on Opto-Electronics and Applied

Optics (Optronix), 1-7, doi: 10.1109/OPTRONIX.2017.8350006.

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A.

Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y.

Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki,

H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, Sharpe, A. W., Yuan, Z. L., Shields, A. J., Uchikoga,

S., Legré, M., Robyr, S., Trinkler, P., Monat, L., Page, J. B., Ribordy, G., Poppe, A., Allacher, A.,

Maurhart, O., Länger, T., Peev, M., and Zeilinger, A.(2011). Field test of quantum key distribution in

the Tokyo QKD network. Optics Express, 19(11), 10387-10409.

Nielsen, M.A. and Chuang, I. L. (2010). Quantum Computation and Quantum Information: 10th Anniversary

Edition. Cambridge University Press.

Pirandola, S., Andersen, U. L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., ... & Gehring, T. (2019).

Advances in quantum cryptography. Advances in Optics and Photonics, 12(4), 1012-1236

Renner, R., and Wolf, R. (2023). Quantum Advantage in Cryptographyhttps://doi.org/10.2514/1.J062267

Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dusek, M., Lütkenhaus, N., & Peev, M. (2009). Security of

practical quantum key distribution. Reviews of Modern Physics, 81(3), 1301-1350.

Van Oorschot, P. C. (2022). Public key cryptography’s impact on society: how Diffie and Hellman changed the

world. In Democratizing Cryptography: The Work of Whitfield Diffie and Martin Hellman (pp. 19-56).

Wehner, S., Elkouss, D., & Hanson, R. (2018). Quantum internet: A vision for the road ahead. Science,

(6412), eaam9288.

Whyte, S. T., Omoyiola, B. O., and Bennett, E.O. (2022). Blockchain Technology in Data Integrity Assurance,

ELSEVIER, https://dx.doi.org/10.2139/ssrn.404364

Whyte, S.T. (2021). Reliable Data Collection: A Tool for Data Integrity in Nigeria. Walden Dissertation and

Doctoral Studies Collection. Available online: https://scholarworks.walden.edu/egi/viewcontent.egi

Xu, F., and Ma, X. (2020). Quantum cryptography. In Quantum Communications and Quantum Imaging XVIII

(Vol. 11296, p. 112960G). International Society for Optics and Photonics.

Xu, G., Mao, J., Sakk, E., &Wang, S. P. (2023). An Overview of Quantum-Safe Approaches: Quantum Key

Distribution and Post-Quantum Cryptography, 57th Annual Conference on Information Sciences and

Systems (CISS), http://doi.org/10.1109/CISS56502.2023.10089619.

Similar Articles

You may also start an advanced similarity search for this article.