ASSESSING THE IMPACT OF GRAPE POMACE ADDITION ON THE FERMENTATIVE PROFILE OF CONCENTRATE FEED
Abstract
Spain's agricultural sector, a significant socioeconomic and environmental activity, utilizes half of the country's land for agriculture and livestock. Among livestock, Spain ranks second in the European Union for sheep population, primarily concentrated in the Extremadura region. Ruminants, prevalent in the country, possess a digestive system capable of fermenting fibrous material into volatile fatty acids and gases, including methane (CH4), a potent greenhouse gas. The nation is also a global leader in vineyard cultivation and ranks third in wine production, generating substantial organic by-products like grape pomace, known for its polyphenolic properties.
Given these circumstances, this study addresses the necessity of proposing environmentally sustainable management strategies. The research entails in vitro analysis of the fermentative and methanogenic profiles of a concentrate enriched with dried grape pomace at varying proportions. Grape pomace contains tannins and ruminal antimethanogenic properties. Incorporating these by-products into ruminant diets not only reduces ration costs but also yields a healthier, higher-quality end product for consumers.
Keywords:
Agriculture, Livestock, Grape pomace, Ruminants, Methane mitigationDownloads
Published
Issue
Section
How to Cite
License
Copyright (c) 2023 Dr. Carmen Barraso Martínez , Dr. Juan Luis González Ramírez

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abarghuei, M.J., Rouzbehan, Y.,&Alipour, D. (2015). The Effect of Tannins in Grape Pomace and Oak Leaf on the in vitro Organic Matter Digestibility and in situ Disappearance of Sheep.Iranian Journal of Applied Animal Science, 5, 95-103.
Aghajanzadeh-Golshani, A.,Maheri Sis, N., Salamat Doust Nobar, R., Ebrahimnezhad, Y., &Ghorbani, A. (2015). Developing a modified in vitro gas production technique to replace the nylon bag method of evaluating protein degradation of alfalfa hay in ruminants.Iranian Journal of Applied Animal Science, 5 (2), 339-345.
Atalay, A. (2020). Determination of nutritive value and anti-methanogenic potential of turkish grape pomace using in vitro gas production technique. Journal of Animal and Plant Sciences, 30(4), 944–949. https://doi.org/10.36899/JAPS.2020.4.0110
Axford, R. F. E., &Chamberlain, A. G. (1987). Use of faecal organisms from sheep for the in vitro determination of digestibility. The Journal of Agricultural Science, 109(2), 257–259. https://doi.org/10.1017/S0021859600080667
Barraso, C., López-Parra, M. M.,& Rodríguez, P. L. (2021). Efecto de la variedad de orujo de uva sobre la producción de gas y metano in vitro.Archivos de Zootecnia, 70, 34-41.
Bhatta, R., Saravanan, M., Baruah, L., Sampath, K. T., & Prasad, C. S. (2013). Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. Journal of Applied Microbiology, 115(2), 455–465. https://doi.org/10.1111/jam.12238
Bucchetti, B., Matthews, M. A., Falginella, L., Peterlunger, E.,& Castellarin, S. D. (2011). Effect of water deficit on Merlot grape tannins and anthocyanins across four seasons. Scientia Horticulturae, 128(3), 297–305. https://doi.org/10.1016/j.scienta.2011.02.003
Damiran, D.,& Yu, P. (2010). Chemical profile, rumen degradation kinetics, and energy value of four hull-less barley cultivars: comparison of the zero-amylose waxy, waxy, high-amylose, and normal starch cultivars. Journal of Agricultural and Food Chemistry, 58(19), 10553–10559. https://doi.org/10.1021/jf101624a.
Dhanoa, M. S., France, J., Crompton, L. A., Mauricio, R. M., Kebreab, E., Mills, J. A. N., Sanderson, R., Dijkstra, J., & Ló, S. (2004). Technical note: A proposed method to determine the extent of degradation of a feed in the rumen from the degradation profile obtained with the in vitro gas production technique using feces as the inoculum 1. Journalof Animal Science, 82, 733-746.
EC. (2009). Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. Official Journal of the European Union, 26-02-2009.
El-Meadaway, A., Mir, Z., Mir, P. S., Zaman, M. S., &Yanke, L. J. (1998). Relative efficacy of inocula from rumen fluid or faecal solution for determining in vitro digestibility and gas production For personal use only. Canadian JournalOf Animal Science,78, 673-679.
Gemeda, B. S.,&Hassen, A. (2015). Effect of tannin and species variation on in vitro digestibility, gas, and methane production of tropical browse plants. Asian-Australasian Journal of Animal Sciences, 28(2), 188–199. https://doi.org/10.5713/ajas.14.0325
Goel, G., Puniya, A. K., Aguilar, C. N., &Singh, K. (2005). Interaction of gut microflora with tannins in feeds.Naturwissenschaften, 92,497–503. https://doi.org/10.1007/s00114-005-0040-7
Gomaa, R. M. M., González-Ronquillo, M., Arredondo-Ramos, J., Castelán Ortega, O. A., &Molina, L. T. (2017). Effect of tanniferous plants on in vitro digestion and methane production. Ecosistemas y Recursos Agropecuarios, 4(11), 371. https://doi.org/10.19136/era.a4n11.1160
Hatew, B., Stringano, E., Mueller-Harvey, I., Hendriks, W. H., Carbonero, C. H., Smith, L. M. J.,&Pellikaan, W. F. (2016). Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. Journal of Animal Physiology and Animal Nutrition, 100(2), 348–360. https://doi.org/10.1111/jpn.12336
Hervás, G., Frutos, P., Giráldez, F. J., Mantecón, Á. R.,& Álvarez Del Pino, M. C. (2003). Effect of different doses of quebracho tannins extract on rumen fermentation in ewes. Animal Feed Science and Technology, 109(1–4), 65–78. https://doi.org/10.1016/S0377-8401(03)00208-6
Hixson, J. L., Jacobs, J. L., Wilkes, E. N., &Smith, P. A. (2016). Survey of the Variation in Grape Marc Condensed Tannin Composition and Concentration and Analysis of Key Compositional Factors. Journal of Agricultural and Food Chemistry, 64(38), 7076–7086. https://doi.org/10.1021/acs.jafc.6b03126
Hochberg, U., Degu, A., Cramer, G. R., Rachmilevitch, S., &Fait, A. (2015). Cultivar specific metabolic changes in grapevines berry skins in relation to deficit irrigation and hydraulic behavior. Plant Physiology and Biochemistry, 88, 42–52. https://doi.org/10.1016/j.plaphy.2015.01.006
Jayanegara, A., Wina, E., Soliva, C. R., Marquardt, S., Kreuzer, M., & Leiber, F. (2011). Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Animal Feed Science and Technology, 163(2–4), 231–243. https://doi.org/10.1016/j.anifeedsci.2010.11.009
Lassey, K. R. (2008). Livestock methane emission and its perspective in the global methane cycle. Australian Journal of Experimental Agriculture, 48(1–2), 114–118. https://doi.org/10.1071/EA07220
MAPA (2020). Dirección general de producciones y mercados agrarios, principales indicadores económicos. http://publicacionesoficiales.boe.es/
Mauricio, R. M., Owen, E., Mould, F. L., Givens, I., Theodorou, M. K., France, J., Davies, D. R., & Dhanoa, M. S. (2001). Comparison of bovine rumen liquor and bovine faeces as inoculum for an in vitro gas production technique for evaluating forages.Animal Feed Science and Technology, 89, 33-48.
Mcdonald, I. (1981). A revised model for the estimation of protein degradability in the rumen. Journal Agriculture Science Cambrige, 96, 251-252.
Mcsweeney, C. S., Palmer, B., Mcneill, D. M.,&Krause, D. O. (2001). Microbial interactions with tannins: nutritional consequences for ruminants.Animal Feed Science and Technology,91, 83-93.
Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., &Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1), 217–222. https://doi.org/10.1017/S0021859600086305
Moate, P. J., Williams, S. R. O., Torok, V. A., Hannah, M. C., Ribaux, B. E., Tavendale, M. H., Eckard, R. J., Jacobs, J. L., Auldist, M. J., &Wales, W. J. (2014). Grape marc reduces methane emissions when fed to dairy cows. Journal of Dairy Science, 97(8), 5073–5087. https://doi.org/10.3168/jds.2013-7588
Moate, Peter J., Jacobs, J. L., Hixson, J. L., Deighton, M. H., Hannah, M. C., Morris, G. L., Ribaux, B. E., Wales, W. J., &Williams, S. R. O. (2020). Effects of feeding either red or white grape marc on milk production and methane emissions from early-lactation dairy cows. Animals, 10(6), 976. https://doi.org/10.3390/ani10060976
OVI.(2019). Note de conjoncture mondiale situation du secteur en 2018. http://www.ovi.int/public/medias/6678/gr-oiv-note-de-conjoncture-2019.pdf
Owens, F. N., &Basalan, M. (2016). Ruminal fermentation. Rumenology (pp. 63–102). Springer International Publishing. https://doi.org/10.1007/978-3-319-30533-2_3
Patra, A. K.,&Saxena, J. (2010). A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry, 71,1198–1222). https://doi.org/10.1016/j.phytochem.2010.05.010
Ramin, M., Lerose, D., Tagliapietra, F., & Huhtanen, P. (2015). Comparison of rumen fluid inoculum vs. faecal inoculum on predicted methane production using a fully automated in vitro gas production system. Livestock Science, 181, 65–71. https://doi.org/10.1016/j.livsci.2015.09.025
Rasouli, B., &Amiri, B. (2016). Nutritive Value Assessment of Three Rangeland Species Using Sheep Rumen and Feces Fluid. Environmental Resources Research, 4, 141-152).
Sallamab,S.M.AH., S., Bueno, S., Silva, I.C., de Godoy, P., Nozella, E.F., Vitti, D.M.,& Abdalla, L.(2010).Ruminal fermentation and tannins bioactivity of someBrowses using a semi-automated gas production technique.Tropical and Subtropical Agroecosystems. 12, 1–10. http://www.redalyc.org/articulo.oa?id=93913074001
Smith, A. H., Zoetendal, E.,& Mackie, R. I. (2005). Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microbial Ecology, 50,197–205). https://doi.org/10.1007/s00248-004-0180-x
Sofyan, A., Sakti, A. A., Herdian, H., Khairulli, G., Suryani, A. E., Karti, P. D. M. H., & Jayanegara, A. (2017). In vitro gas production kinetics and digestibility of king grass (Pennisetum hybrid) added by organic mineral and natural crude tannin. Journal of Applied Animal Research, 45(1), 122–125. https://doi.org/10.1080/09712119.2015.1129339
Spanghero, M., Chiaravalli, M., Colombini, S., Fabro, C., Froldi, F., Mason, F., Moschini, M., Sarnataro, C., Schiavon, S., & Tagliapietra, F. (2019). Rumen inoculum collected from cows at slaughter or from a continuous fermenter and preserved in warm, refrigerated, chilled or freeze-dried environments for in vitro tests. Animals, 9(10). https://doi.org/10.3390/ani9100815
Yu, J.,&Ahmedna, M. (2013). Functional components of grape pomace: Their composition, biological properties and potential applications. International Journal of Food Science and Technology, 48, 221–237. https://doi.org/10.1111/j.1365-2621.2012.03197.x