Advanced Journal of Environmental Sciences (AJES)

ASSESSING WILDFIRE OCCURRENCE IN WEST AFRICA WITH ATMOSPHERIC CO₂ REMOVAL

Authors

  • Uzoma E.K Department of Physics, Hezekiah University, Umudi, Nkwerre, Nigeria
  • Otunla T A Department of Physics, University of Ibadan, Ibadan, Nigeria
  • Nymphas E. F Department of Physics, University of Ibadan, Ibadan, Nigeria
  • Ogunsola O E Department of Physics, University of Ibadan, Ibadan, Nigeria
  • Adeniyi M O Department of Physics, University of Ibadan, Ibadan, Nigeria

Abstract

The increase in wildfire occurrence is one of the consequences of the recent global temperature rise. Understanding wildfire occurrence in West Africa under atmospheric carbon dioxide removal is significant because of its implications on climate systems, ecosystems, agriculture, and socioeconomic development. This study projected the impacts of atmospheric carbon dioxide removal on fire occurrence in West Africa by analyzing the CNRM ESM1 C1 model output for the Carbon Dioxide Removal Model Inter-comparison Project (CDRMIP). Four climatological periods–1990–2019 (reference period), 2040 – 2069, 2070–2099 and 2100-2129 were analyzed using four fire indices. The periods 2040–2069, 2070–2099, and 2100–2129 have 42%, 45.9%, and 49.4% of “No Fire” category among other categories, respectively, with the Lebanese Index. With Mark 4 Grassland Fire Danger Index, a low category of fire risk is also predominant at 95.6%, 96.4%, and 66.1% for 2040–2069, 2070–2099, and 2100–2129, respectively. None of the indices projected a case of high, very high, or extreme risk in any period. “Low risk” category is predominant with all indices, particularly in Cote D’Ivoire, Ghana, Burkina Faso, Togo, Benin, and Nigeria. The low-risk category for fire occurrence during carbon dioxide removal in West Africa suggests a favorable outcome for the region’s ecosystems, agriculture, and communities. The study highlights the potential benefits of CDR beyond carbon removal, such as enhanced resilience, sustained productivity, and reduced vulnerability to climate-induced hazards like wildfires

Keywords:

West Africa, Temperature, Wildfire, Carbon Dioxide Removal, Lebanese Index, Low Risk

Published

2025-06-09

DOI:

https://doi.org/10.5281/zenodo.15623178

Issue

Section

Articles

How to Cite

Uzoma, E. K., Otunla , T. A., Nymphas, E. F., Ogunsola, O. E., & Adeniyi, M. O. (2025). ASSESSING WILDFIRE OCCURRENCE IN WEST AFRICA WITH ATMOSPHERIC CO₂ REMOVAL . Advanced Journal of Environmental Sciences (AJES), 16(6), 11–29. https://doi.org/10.5281/zenodo.15623178

References

Abatzoglou, J. T., and Kolden, C. A. (2013). Relationships between climate and macroscale area burned in the western United States. International Journal of Wildland Fire 22 (7), 1003–1020. Doi:10.1071/WF13019.

Andreae, M. O., and Merlet, P. (2001). The emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15:955

Balch, J. K., Bradley, B. A, Abatzoglou J. T and Mahood, A. L. (2017). Human-started wildfires expand the fire niche across the United States. Proceedings of National Academy of Science U. S. A. https://doi.org/10.1073/pnas.1617394114

Balmes, J. R. (2020). Where there’s smoke, kids will cough and wheeze. Annals of the American Thoracic Society, 17(3), 276–277. https://doi.org/10.1513/AnnalsATS.201910-728ED

Bond, W. J. (2008. What limits the use of trees in C4 grasslands and savannas? Annual Review of Ecology, Evolution, and Systematics, 39, 641–59.

Burrell, A., Kukavskaya, E., Baxter, R., Sun, Q., and Barrett, K. (2021). Post-fire recruitment failure as a driver of forest to non-forest ecosystem shifts in boreal regions. In J. G. Canadell & R. B. Jackson (Eds.), Ecosystem Collapse and Climate Change (pp. 69–100). Springer International Publishing. https://doi.org/10.1007/978-3-030-71330-0_4

Burrell, A. L., Evans, J. P., and De Kauwe, M. G. (2020). Anthropogenic climate change has driven over 5 million km2 of drylands toward desertification. Nature Communications, 11(1), 3853. https://doi.org/10.1038/s41467-020-17710-7

Caillault, S. Le feu, la brousse and la savane (2011). Modelisation spatiale de la dynamique des paysages soudaniens (Burkina Faso). Ph. D. Thesis, University de Caen Basse, Normandie, France.

Center for Climate and Energy Solutions, (2023). Wildfires and Climate Change. https://www.c2es.org/content/wildfires-and-climate-change/

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R .D., Coakley, J. A., Hansen, J. E., and Hofmann, D. J. (1992). Climate Forcing by Anthropogenic Aerosols. Science, 255, 423–430.

Climate Reality Project (2023). Wildfires and the climate crisis. https://www.climaterealityproject.org/blog/wildfires-and-climate-crisis

Danthu, P., M. Ndongo, M. Diaou, O. Thiam, A. Sarr, B. Dedhiou, and A. Ould Mohamed Vall, A. (2003). Impact of bush fire on germination of some West African acacias. Forest Ecology and Management, 173(1), 1–10.

Devineau, J. L., Fournier, A. and Nignan, S. (2010). Assessing Savanna fire regimes assessment with MODIS fire data: Their relationship to land cover and plant species distribution in western Burkina Faso (West Africa). Journal of Arid Environment, 74, 1092–101.

Environmental Defense Fund 2023. Climate Change and Wildfires. Retrieved from https://www.edf.org/climate/heres-how-climate-change-affects-wildfires

Eyring, V., Bony, S., Meehl, G .A., Senior, C .A., Stevens, B., Stouffer, R.J. and Taylor, K.E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization; Geoscience Model Development, 9 1937–1958 https://doi.org/10.5194/gmd-9-1937-2016.

FAO. (2007). Fire Management and Global Assessment.

Giglio, L., Randerson, J.T., van der Werf, G.R., Kasibhada, P.S., Collatz, G.J., Morton, D.C. and de Fries, R.S. (2010). Assessing variability and long-term trends in burned areas by merging multiple satellite fire products. Biogeosciences, 7, 1171–1186.

Global Forest Resources Assessment (2000). Global issues. Chapter 8. Fire https://www.fao.org/3/Y1997E/y1997e0d.htm#bm13.

Gomes, J.F.P. (2006). Forest fires in Portugal: How do they happen and why they happen. International Journal of Environmental Studies, 63(2), 109–119. DOI: 10.1080/00207230500435304.

Grégoire, J. M., Eva, H.D., Belward, A.S., Palumbo, I., Simonetti, D., and Brink, A. (2013). Effect of land-cover change on Africa’s burnt area. International Journal of Wildland Fire, 22, 107–120.

Hamadeh, N., Karouni, A., Daya, B., and Chauvet, P. (2017). Using correlative data analysis to develop weather index that estimates the risk of forest fires in Lebanon: Assessment versus prevalent meteorological indices, European Journal of Agriculture and Forestry Research 5(1), Pp.9-34.

Hansen, J., Sato, M., and Ruedy, R. (1997). Radiative forcing and climate response. Journal of Geophysical Research, 102, 6831–6864.

He, T., Lamont, B. B., and Pausas, J. G. (2019). Fire as a key driver of Earth’s biodiversity. Biological Reviews, 94(6), 1983–2010. https://doi.org/10.1111/brv.12544

Hirota, M., Holmgren, M., Van Nes, E. H., and Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. Science, 334(6053), 232–235. https://doi.org/10.1126/science.1210657

Hope, E. S., McKenney, D. W., Pedlar, J. H., Stocks, B. J., and Gauthier, S. (2016). Wildfire suppression costs for Canada under a changing climate. PLOS One, 11(8), e0157425. https://doi.org/10.1371/journal.pone.0157425

Johnston, F. H., Borchers-Arriagada, N., Morgan, G. G., Jalaludin, B., Palmer, A. J., Williamson, G. J., and Bowman, D. M. J. S. (2021). Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nature Sustainability, 4 (1), 42–47. https://doi.org/10.1038/s41893-020-00610-5

Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M., DeFries, R. S., et al. (2012). Estimated global mortality attributable to smoke from landscape fires. Environmental Health Perspectives, 120(5), 695–701. https://doi.org/10.1289/ehp.1104422

Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., and Bowman, D. M. J. S. (2015). Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6(1), 7537. https://doi.org/10.1038/ncomms8537

Jones, M. W., Abatzoglou, J. T.,Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A.J.P., Burton, C., Betts, R.A., vander Werf, R.A., Sitch, S., Canaell, J.G., Santin, C., Kolden, C., Doerr, S.H., and Quere , C.L. (2022). Global and regional trends and fire drivers under climate change. Reviews of Geophysics 60, e2020RG000726. https://doi.org/10.1029/2020RG000726

Joubert, D. F., Smit, G. N., and Hoffman, M. T. (2012). The role of fire in preventing transitions from a grass-dominated state to a bush-thickened state in arid savannas. Journal of Arid Environments, 87, 1–7.

Kabo-Bah, A.T., Amo-Boateng, M., Kabo-Bah, K., Sey, N.E.N., Siabi, E., Okyereh, S., Sarquah, K. (2016b). A Regional Assessment of Wildfires in West Africa. Sendai Framework Implementation. Available at: 65783_f204amoskabobahsendaiframeworkimple.pdf

Kabo-Bah, A. T., Diji, C. J., Nokoe, K., Mulugetta, Y., Obeng-Ofori, D., and Akpoti, K. (2016a). Multiyear rainfall and temperature trends in the Volta river basin and their potential impact on hydropower generation in Ghana. Climate, 4(4), 49.

Kauffman, J.B., Arifanti, V.B., Basuki, I., Kurnianto, S., Novita, N., Murdiyarso, D., Donato, D.C., Warren, M.W. (2016). Protocols for the Measurement, Monitoring, and Reporting of Structure, Biomass, Carbon Stocks, and Greenhouse Gas Emissions in Tropical Peat Swamp Forests. Protocols for the measurement, monitoring, and reporting of structure, biomass, carbon stocks, and greenhouse gas emissions in tropical peat swamp forests (Center for International Forestry Research (CIFOR). https://doi.org/10.17528/cifor/006429.Return to ref 22 in article

Kaufman Y.J. and Tanré, D. (1994). Effect of variations in super-saturation on the formation of cloud condensation nuclei. Nature 369, 45–48.

Keller, D. P., Lenton, A., Littleton, E .W., Oschlies, A., Scott, V., Vaughan, N .E. (2018). The Effects of Carbon Dioxide Removal on the Carbon Cycle. Springer, Current Climate Change Reports 4, 250–265. https://doi.org/10.1007/s40641-018-0104-3.

Kennedy, P. J., Belward, A. S., and Gregoire, J. M. (1994). An improved approach to fire monitoring in West Africa using AVHRR data. International Journal of Remote Sensing, 15(11), 2235–2255.

Koppmann, R., Von Czapiewski, K., and Reid, J.S. (2005). A review of biomass burning emissions, part I: Gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmospheric Chemistry and Physics, 5, 10455–10516.

Kraaij, T., and Ward, D. (2006). Effects of rainfall, nitrogen, fire, and grazing on tree recruitment and early survival in bush-encroached savanna, South Africa. Plant Ecology. 186(2), 235–246.

Kull, C.A., and Laris, P. (2009). Fire ecology and fire politics in Mali and Madagascar. In Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics. Springer: Berlin/Heidelberg, Germany, 2009; pp. 171–226. [Google Scholar] [CrossRef].

Laris, P. (2013). Integrating Land Change Science and Savanna Fire Models in West Africa. Land, 2013, 2, 609-636. https://doi.org/10.3390/land2040609.

Levine, J.S. (1994). Biomass Burning and the Production of Greenhouse Gases. In Climate Biosphere Interaction: Biogenic Emissions and Environmental Effects of Climate Change; Zepp, R.G., Ed.; John Wiley and Sons: New York, NY, USA, pp. 139–160. [Google Scholar].

Loehman, R.A., Reinhardt, E., Riley, K.L. (2014). Wildland fire emissions, carbon, and climate: Seeing the forest and the trees — A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. Forest Ecology and Management, 317, 9–19. [Google Scholar] [CrossRef])

Maslin, M. (2008). Global Warming. A Very Short Introduction. Oxford University Press Inc.

McArthur, A.G. (1966). Weather and grassland fire behavior. Department of National Development, Forestry, and Timber Bureau Leaflet No. 100. Canberra, Australia.

Moris, J. V., Conedera, M., Nisi, L., Bernardi, M., Cesti, G., and Pezzatti, G. B. (2020). Lightning-caused fires in the Alps: identifying the igniting strokes. Agricultural and Forest Meteorology, 290, 107990, https://doi.org/10.1016/j.agrformet.2020.107990.

National Interagency Fire Center (2020). Federal firefighting costs (suppression only). Retrieved from https://www.nifc.gov/fire-information/statistics/suppression-costs.

Rao, K., Williams, A. P., Diffenbaugh, N. S., Yebra, M., Bryant, C. and Konings, A. G. (2023). Dry live fuels increase the likelihood of lightning-caused fires. Geophysical Research Letters, 50, e2022GL100975. https://doi. org/10.1029/2022GL100975

Reddad, H., Etabaai, I., Rhoujjati, A., Taieb, M., Thevenon, F., and Damnati, B. (2013). Fire activity in North West Africa during the last 30,000 cal years BP inferred from a charcoal record from Lake Ifrah (Middle atlas-- Morocco): climatic implications. Journal of African Earth Sciences.

Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., and Elliott, C. T. (2016). Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives, 124 (9), 1334–1343. https://doi.org/10.1289/ehp.1409277

Roberts, G., Wooster, M.J. and Lagoudakis, E. (2009). Annual and diurnal African biomass-burning temporal dynamics. Biogeosciences 6, 849–866. doi:10.5194/BG-6-849-2009

Roudier, P., Sultan, B., Quirion, P., and Berg, A. (2011). Impact of future climate change on West African crop yields: What is the recent literature? Global Environmental Change, 21(3), 1073–1083.

Scholes, R. J., and Archer, S. R. (1997). Tree-grass interactions in Savannas. Annual Review, 28: 517-544. https://doi.org/10.1146/annurev.ecolsys.28.1.517

Schunk, C., Leutner, C., Leuchner, M., Wastl, C., Menzel, A. (2013). Equilibrium moisture content of dead fine fuels of selected central European tree species. International Journal of Wildland Fire 22(6):797-809.

Shlisky, A., Alencar, A., Nolasco, M.M. and Curran, L. (2009). Overview: Global fire regime conditions, threats, and opportunities for fire management in the tropics In Tropical Fire Ecology (pp. 65–83). Berlin/Heidelberg, Germany: Springer; 2015.

Staver, A. C., Archibald, S., Levin, S. A. (2011). The global extent and determinants of savanna and forest as alternative biome states. Science, 334(6053), 230–232. https://doi.org/10.1126/science.1210465

Stocks, B. J., and Martell, D. L. (2016). Forest fire management expenditures in Canada: 1970–2013. The Forestry Chronicle, 92 (03), 298–306. https://doi.org/10.5558/tfc2016-056

Sultan, B., Roudier, P., Quirion, P., Alhassane, A., Muller, B., Dingkuhn, M. and Baron, C. (2013). Assessing the impacts of climate change on sorghum and millet yields in the Sudanian and Sahelian Savanna of West Africa. Environmental Research Letters, 8(1), 14040.

Tymstra, C., Bryce, R., Wotton, B., Taylor, S., and Armitage, O. (2010). Northern Forestry Center (Canada): Development and structure of Prometheus: The Canadian wildland fire growth simulation model. Northern Forestry Center. Retrieved from https://central.bac-lac.gc.ca/.item?id=31775&op=pdf&app=Library.

Uzoma, E.K. and Adeniyi, M.O. (2025). Projected heat/cold waves and heat stress conditions in West Africa under carbon dioxide removal scenarios. Modelling Earth System and Environment, 11(112). https://doi.org/10.1007/s40808-025-02297-z

Uzoma, E. K., Adeniyi, M. O., Keller, D. P., Seferian, R., and Oladiran, E. O. (2023). The impact of carbon dioxide removal on temperature parameters over West Africa; Meteorology and Atmospheric Physics, 135(55). https://doi.org/10.1007/s00703-023-00992-z.

Van Lierop, P., Lindquist, E., Sathyapala, S., and Franceschini, G. (2015). Global forest area disturbance due to fire, insect pests, diseases, and severe weather events. Forest Ecology and Management, 352, 78-88.

Vernooij, R., Giongo, M., Borges, M. A., Costa, M. M., Barradas, A. C. S., and van der Werf, G. R (2021). Intraseasonal variability of greenhouse gas emission factors from biomass burning in the Brazilian Cerrado. Biogeosciences, 18, 1375–1393, https://doi.org/10.5194/bg-18-1375-2021, 2021.

Ward, M., Tulloch, A. I. T., Radford, J. Q., Williams, B. A., Reside, A. E., Macdonald, S. L., et al. (2020). Impact of 2019–2020 mega-fires on Australian fauna habitat. Nature Ecology & Evolution, 4(10), 1321–1326. https://doi.org/10.1038/s41559-020-1251-1

Wimberly, M.C., Wanyama, D., Doughty, R., Peiro, H., and Crowell, S. (2024). Increasing Fire Activity in African Tropical Forests Is Associated With Deforestation and Climate Change. Geophysical Research Letters, 51(9). https://doi.org/10.1029/2023GL106240

Yaro, V.S.O., Bondé, L., Bougma, Pt.C, Sedgo I, Guuroh, R.T, Gebremichael A.W., Neva, T., Linstadter, A., and Ouedraogo, O. (2024). Greenhouse gas emission from prescribed fires is influenced by vegetation types in West African Savannas. Scientific Report, 14, 23754. https://doi.org/10.1038/s41598-024-73753-6

Yongkang, X., Aaron, B., Christopher, M.T. (2012). Review of Recent Developments and the Future Prospective in West African Atmosphere/Land Interaction Studies. International Journal of Geophysics, ID 748921, 12 pages, https://doi.org/10.1155/2012/748921.

Zafar, S .A., Hameed, A., Nawaz, M .A., Wei, M .A., Noor, M .A., Hussain, M., and Rahman, M. (2018). Mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario. Journal of Integrative Agriculture, 17 (4) 726-738.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.