Advanced Journal of Environmental Sciences (AJES)

ECOTOXICOLOGY AND BIOREMEDIATION OF HYDROCARBON-POLLUTED SOILS: A NARRATIVE REVIEW

Authors

  • Alexander Sixtus Eko University of Abuja, Abuja, Nigeria
  • Mohammed Abdullahi Evuti University of Abuja, Abuja, Nigeria
  • Amarachukwu Enumah University of Abuja, Abuja, Nigeria
  • Desmond Achidi University of Abuja, Abuja, Nigeria
  • Dr Zachariah Adu Adejoh Department of Chemical Engineering, University of Abuja

Abstract

The threat of increasing pollution on the health of living organisms and their local ecosystem by contaminants of petroleum origin in the environment is a worldwide concern. The development of efficient, economical, and improved techniques aimed at mitigating any known or further catastrophic backwash effects that the accumulation of petroleum contamination may give rise to has prompted wide research. This review takes a significant look into the ecotoxicological nature of petroleum contamination and pollution in the environment and how the inculcation of genetic engineering—in producing better and more resistant species of degraders, nanotechnology—in improving bioprocesses through environment and bioprocess modifications, and artificial intelligence—through bioinformatics, etc.—have so far effectively enhanced biological means of remediating petroleum hydrocarbon (PHC) contaminated sites. Conclusively, the infusion of advanced engineering techniques (i.e., artificial intelligence, genetic engineering, and nanotechnology) in achieving biological remediation has greatly improved remediation processes, producing credible, more efficient results and a reliable established database for forecasted cases of petroleum pollution, compared to contemporary methods of bioremediation

Keywords:

Petroleum, contamination, Bioremediation, Genetic engineering, Nanotechnology, Artificial intelligence

Published

2025-08-28

DOI:

https://doi.org/10.5281/zenodo.16994472

Issue

Section

Articles

How to Cite

Eko, A. S., Evuti, M. A., Enumah, A., Achidi, D., & Adejoh, Z. A. (2025). ECOTOXICOLOGY AND BIOREMEDIATION OF HYDROCARBON-POLLUTED SOILS: A NARRATIVE REVIEW. Advanced Journal of Environmental Sciences (AJES), 16(8), 12–60. https://doi.org/10.5281/zenodo.16994472

References

Yojana Waychal, Shreya Gawas, and Sargar H. Barage (2022). Bioremediation of petroleum-contaminated soil Advances in Bioremediation and Phytoremediation for Sustainable Soil Management (pp. 157-170). https://doi:10.1007/978-3-030-89984-4_10

Rowland U. Ofoegbu, Yusuf O.L. Momoh, and Ify L. Nwaogazie. (2015). “Bioremediation of crude oil contaminated soil using organic and inorganic fertilizers.” J Pet Environ Biotechnol 2015, 6.1.

M. M. Amro, M. Benzagouta S. and Karnanda W. (2013). Investigation of crude oil penetration depth into soils Arab J Geosci 6: 873-880.

The Oil World, Chennai, India, March 1, 2011.

C. Y. Onuh, A. Dosunmu, P. A. L. Anawe, E. E. Okoro, K. C. Igwilo ad A. B. Ehinmowo (2020). Rheological Behavior of a Pseudo-Oil-Based Mud developed with Plant Oil of Hura Crepitans as a Base Fluid Journal of Petroleum Exploration and Production Technology. 2010;10:71–89.

Ailijiang, N., Zhong, Xiaolong Zhou, X., Mamat, A., Chang, J., Cao, Zhenyu Hua & Nanxin Li (2022): Levels, sources, and risk assessment of PAHs residues in soil and plants in urban parks of Northwest China. Scientific Reports, 12 (2022) 12:21448.

Laffon, B., Pásaro, E., & Valdiglesias, V. (2016). Effects of exposure to oil spills on human health: an updated review. Environmental Health. J Toxicol Environ Heal B Crit Rev 19:105–128. DOI: 10.1080/10937404.2016.1168730

Radermacher, M. (2010): Bioremediation of marine oil spills.

Ji, J., Kakade, A., Yu, Z., Khan, A., Liu, P., Li, X. (2020). Anaerobic Membrane Bioreactors for Emerging Contaminants: A Review Journal of Environmental Management. Vol. 270, 15 September 2020, 110913. https://doi.org/10.1016/j.jenvman.2020.110913

A. A. Malik, J. B. H. Martiny, E. L. Brodie, A. C. Martiny, K. K. Treseder, S. D. Allison (2020). Defining Traits-Based Microbial Strategies for Soil Carbon Cycling Under Climate Change The ISME Journal, 14 (2020), pp. 1-9. https://doi.org/10.1038/s41396-019-0510-0

B.

Panda S.K., Kar R.N., and Panda C.R. (2013). “Isolation and identification of petroleum hydrocarbon-degrading microorganisms from an oil-contaminated environment.” International Journal of Environmental Science, 3(5): 1314-1320.

Obuekwu, C. O., Al-Jadi, Z. K., & Al-Saleh, E. S. (2009). “Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacteria hydrocarbon degraders from petroleum-contaminated Kuwait desert environment.” Int. Biodeterior. Biodegrad. 63, 273-279. https://doi:10.1016/j.ibiod.2008.10.004

Patel Ab, Shaikh S, Jain KR (2020): Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and remediation approaches. Front Microbiol 2675 (2001)

Srivastava, M., Srivastava, Anjali Yadav, Varum Rawat: (2020) “Source and Control of Hydrocarbon Pollution” Intechopen. 8:64 - 87

Florida Department of Environmental Protection (2023): “Commonly Encountered Petroleum and Petroleum Products for Florida Storage Tank Systems.” Florida Department of Environmental Protection. Section 376. 301 (30–31):

Alexis Nzila (2018): Current Status of the Degradation of Aliphatic and Aromatic Petroleum Hydrocarbons by Thermophilic Microbes and Future Perspectives. 2018 Dec; 15(12):2782.

Thavamani P, Megharaj M, Naidu R. Bioremediation of High Molecular Weight Polyaromatic Hydrocarons Co-contaminated with Metals in Liquid and Soil Slurries by Metal Tolerant PAHs Degrading Bacteria Consortium. Biogdegradation. 2012;23(6):823-35. https://doi:10.1007/s10532-012-9572-7

Priyom Bose (2021); Bioremediation: An Overview. Azolife Sciences.

Uchechukwu E. Ezeji, Sylvia O. Anyadoh, and Vincent I. Ibekwe (2007). Clean-up of crude oil contaminated soil. Terrestrial and Aquatic Environmental Toxicology 1(2): 54-59.

Venosa, A. D., Suidan, M. T., & Lee, K. (1999). Remediation of a freshwater wetland in the presence and absence of wetland plants through enhanced biostimulation Part 1: Effectiveness US. EPA pp1-3.

Sharma, U., & Sharma, J. G. (2022): Nanotechnology for the bioremediation of heavy metals and metalloids. Journal of Applied Biology & Biotechnology, vol. 10, no. 5, pp. 34-43.

Petroleum Hydrocarbons (PHCs). (April 28, 2022). Environ Wiki.

Yojana Waychal, Shreya Gawas, and Sagar H. Barage (2022). Bioremediation of petroleum-contaminated soil Advances in Bioremediation and Phytoremediation for Sustainable Soil Management. https://doi.org/10.1007/978-3-030-89984-4_10

Shulsen Chen (2019): Bioremediation of petroleum-contaminated soil. Intech Open. https://doi:10.5772/intechopen.90289

Liu, Q.; Tang, J.; Bai, Z.; Hecker, M. Giesy, J. P. Distribution of petroleum-degrading genes and factor analysis of petroleum-contaminated soil from the Dagang Oilfield, China. Scientific Reports 5, 11068 (2015).

Streche, C., Cocârţă, D. M., and Istrate, I. A. Badea, A. A. Decontamination of Petroleum-Contaminated Soils Using The Electrochemical Technique: Remediation Degree and Energy Consumption. Scientific Reports 2018, 8, 3272.

Amber J. Pete, Bhuvnesh Bharti, and Michael G. Benton, J., & Xu, M. (2021). Nano-enhanced bioremediation for oil spills: A review. ACS EST Engg. 2021, 1, 928−946.

G. Omokhagbor Adams, P. Tawari Fufeyin, S. Eruke Okoro, I. Ehinomen, Bioremediation, biostimulation and bioaugmention: a review, Int. J. Environ. Bioremed. Biodegrad. 2015, 3, 28−39.

Hassanshahian, M.; Emtiazi, G.; Caruso, G.; Cappello, S. Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: A mesocosm simulation study. Mar. Environ. Res. 2014, 95, 28−38.

Wang, X.; Wang, Q.; Wang, S.; Li, F.; Guo, G. Effect of biostimulation on community-level physiological profiles of microorganisms in field-scale biopsies composed of aged oil sludge. Bioresour. Technol. 2012, 111, 308−315.

Nikolopoulou, M.; Kalogerakis, N. Biostimulation strategies for enhanced marine oil spill bioremediation, including chronic pollution Timmis, K. N., Ed., Handbook of Hydrocarbon and Lipid Microbiology, Springer: Berlin, Heidelberg, 2010; pp 2521− 2529.

Nikolopoulou, M.; Kalogerakis, N. Enhanced bioremediation of crude oil using lipophilic fertilizers combined with biosurfactants and molasses. Bull 2008, 56 (11), 1855−1861.

Abatenh, E., Gizaw, B., Tsegaye, Z., Wassie, M. Role of microorganisms in bioremediation: A review Open J Environ Biol 2017;1:38-46.

Garrett, W. D.; Barger, W. R. Factors affecting the use of monomolecular surface films to control oil pollution in water. Environ. Sci. Technol. 1970, 4 (2), 123−127.

Rafael Antón-Herrero, Carlos Garcia-Delgado, Natalia Baena, Begoña Mayans, Laura Delgado-Moreno, and Enrique Eymar Assessment of different mushroom substrates used to bioremediate soils contaminated with petroleum hydrocarbons July 2022. Applied Sciences 12(15):7720. https://doi.org/10.3390/app12157720

Gupta, D.; Sarker, B.; Thadikaran, K.; John, V.; Maldarelli, C.; John, G. Sacrificial Amphiphiles: Eco-friendly Chemical Herders as Oil Spill Mitigation Chemicals Science Advances 2015, 1 (5), e1400265.

Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A review of environmental monitoring of water organic pollutants identified by EU guidelines. Hazard, J. Mater. 2018, 344, 146-162.

Moutinho, L.F.; Moura, F.R.; Silvestre, R.C.; Romão-Dumaresq, A.S. Microbial biosurfactants: A broad analysis of properties, applications, biosynthesis, and techno-economical assessment of rhamnolipid production. Biotechnol. Prog. 2020, 37, e3093. https://doi.org/10.1016/j.bioprog.2020.e3093.

Kuyukina, M.S. Biosurfactants of Rhodococcus actinobacteria: Induced Biosynthesis, Properties, Application. Ph. D. Thesis, Institute of Ecology and Genetics of Microorganisms of the Russian Academy of Sciences Ural Branch, Perm, Russia, 2006; p. 295.

A.A. Jimoh, J. Lin, Biosurfactant: A new frontier for greener technology and environmental sustainability, Ecotoxicol. Environ. Saf. 184 (2019) 109607.

Kaczorek, E.; Olszanowski, A. Uptake of hydrocarbon by Pseudomonas fluorescens (P1) and Pseudomonas putida (K1) strains in the presence of surfactants: a cell surface modification. Water, Air, Soil Pollut. 2011, 214 (1), 451−459.

Li, Y. M.; Gong, H. Y.; Cheng, H.; Wang, L. S.; Bao, M. T. Individually immobilized and surface-modified hydrocarbon-degrading bacteria for oil emulsification and biodegradation. Bull. 2017, 125 (1−2), 433−439.

Dewangan, N. K.; Conrad, J. C. Marinobacter hydrocarbonoclasticus adhesion to surfactant-decorated dodecane droplets Langmuir 2018, 34 (46), 14012−14021.

Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface Sci. 2018;138:24–58. https://doi.org/10.1016/j.cis.2007.11.001

Adeleye, A.O., Nkereuwem, M.E., Omokhudu, G.I., Amoo, A.O., Shaka, G.P., Yerima, M.B. (2018). “Effect of microorganisms in the bioremediation of spent engine oil and petroleum related environmental pollution.” J Appl Sci Environ Manage. Vol. 22(2) 157-167: February 2018.

Nnadi, P. C., & Osakwe, J. A. (2017). Bioremediation of Soil Contaminated with Crude Oil and Livestock Waste International Journal of Agriculture and Earth Sciences, vol. 3, no. 7.

Whiteman, W., Goodfellow, M., Kampfer, P., Busse, H.J., Trujillo, M., Ludwig, W., Suzuki, K.I., Parte, A. (2012). The Actinobacteria. Bergey’s Manual of Systematic Bacteriology, 5. Sringer, New York, USA, 2083p. ISBN: 978-1-4939-7916-5.

Cirne, I., Boaventura, J., Guedes, Y., & Lucas, E. (2016): Methods for determining oil and grease contents in wastewater from the petroleum industry. Chemistry and Chemical Technology, vol. 10. No.4.

Chorom, M., Sharifi, H. S., & Motamedi, H. (2010) “Bioremediation of a Crude Oil-Polluted Soil by Application of Fertilizers”. Iran. Environ. Health. Sci. Eng., 2010, Vol. 7, No. 4, pp. 319-326.

Adebusoye, S. A., Ilori, M. O., Ahmud, O. O., Teniola, O. D., & Olatope, S. O. (2007). Microbial degradation of petroleum hydrocarbons in a polluted tropical stream. World J Microbiol Biotechnol 23:1149-1159.

Ayotamuno, M.J., Kogbara, R.B., Ogaji, S.O., and Pobert, S.D. (2006). Bioremediation of a crude oil polluted Agricultural Soil in Port Harcourt, Nigeria. Appl. Energy, 83: 1249-1257.

Zheng, L., Rosenzweig, Fengxian Chen, F., Qin, J., Li, T., Han, J., Istvan, P., Diaz-Reck, D., Gelman, F., Arye, G., & Ronen, Z. (2022) “Bioremediation of petroleum-contaminated soils with biosurfactant-producing degraders isolated from the Native Desert Soils”, Microorganisms. 10: 2267.

ElLiethy, M. A., ElNoubi, M. M., Abia, A. L. K., ElMalky, M. G., Hashem, A. I., & ElTaweel, G. E. (2022). EcoFriendly bioremediation approach for crude oilpolluted soils using a novel and biostimulated Enterobacter Hormaechei ODB H32 strain

Felix M. Oke, Charlotte C. Ndiribe, and Saheed I. Musa, M. (2020), “Bioremediation of diesel polluted soil with Eichhornia crassipes (water hyacinth),” Notulae Scientia Biologicae. 12(4):920-928. https://doi:10.15835/12410814

Uguru, H., & Udubra, E.A. (2021) “Optimizing the Bioremediation of Polluted Hydrocarbons Contaminated Soil,” International Journal of Innovative Environmental Studies Research 9(3):47-53.

Kleindienst, S., Paul, J. H., & Joye, S. B. (2015a). “Using Dispersants after Oil Spills: Impacts on the Composition and Activity of Microbial Communities.” Nat. Rev. Microbiol. 13, 388-396.

Varjani, S. J., & Upasani, V. N. (2017). “A New Look on Factors Affecting Microbial Degradation of Petroleum Hydrocarbon Pollutants.” Int. Biodeterior. Biodegrad. 120, 71-83.

Chen M, Xu P, Zeng G, Yang C, Huang D., and Zhang J. (2015). “Bioremediation of Soils Contaminated with Polycyclic Aromatic Hydrocarbons, Petroleum, Pesticides, Chlorophenol, and Heavy Metals by Composting: Applications, Microbes, and Future Research Needs.” Biotechnol. Adv. 33, 745-755.

Hou, N., Zhang, N., Jia, T., Sun, Y., Dai, Y., Wang, Q., (2018). “Biodegradation of phenanthrene by the biodemulsifier-producing strain Achromobacter sp. LH-1 and its metabolism and Fermentation Kinetics.” Ecotoxicol. Environ. Saf. 163, 205-214.

Ayed, H. B., Jemil, N., Maalej, H., Bayoudh, A., Hmidet, N., & Nasri, M. (2015). “Enhancement of Solubulization and Biodegradation of Diesel Oil by a Biosurfactant from Bacillus amyloliquefaciens An6.” Int. Biodeterior. Biodegrad. 99,8-14.

Inakollu, S., Hung, H.C., and Steve, G.S. (2004). “Biosurfactant Enhancement of Microbial Degradation of Various Structural Classes of Hydrocarbon in Mixed Waste Systems.” Environ. Eng. Sci. 21, 463-469.

Hua, F., & Wang, H. Q. (2014). “Uptake and Transmembrane Transport of Petroleum Hydrocarbons by Microorganisms.” Biotechnol. Biotechnol. Equip. 28, 165-175.

Catalina Trejos-Delgado, Gloria E. Cadavid-Restrepo, Angelina Hormaza-Anaguano, Edison A. Agudelo, Leonardo Barrios-Ziolo, Juan Carlos Loaiza-Usuga & Santiago A. Cardona-Gallo (2020): Oil Bioremediation in a Tropical Contaminated Soil Using a Reactor. Bioremediation and Agricultural Bioremediation in a Tropical Contaminated Soil. An Acad Bras Cienc (2020) 92(2).

Lim MW, Lau EV, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. J Soc Res. 2016; 57: e013-e018. Mar Pollut Bull. 2016;109:14–45. https://doi.org/10.1016/j.marpolbul. 2016.04.023

Martínez Álvarez LM, Lo Balbo A, Mac Cormack WP, Ruberto LAM (2015) Bioremediation of a petroleum hydrocarbon-contaminated Antarctic soil: Optimization of a biostimulation strategy using response surface methodology (RSM). J Biol Sci U S A. 2015; 57: 73-84. Cold Reg Sci Technol 119:61–67.

https://doi.org/10.1016/j.coldregions. 2015.07.005

Tatiana Vyacheslavovna Funtikova, Lenar Imametdinovich Akhmetov, Irina Filippovna Puntus, Pavel Alexeevich Mikhailov, Nurbol Orynbasaruly Appazov, Roza Abdibekovna Narmanova, Andrey Evgenievich Filonov, and Inna Petrovna Solyanikova (2023) [Remark 1] Bioremediation of Oil-Contaminated Soil in the Republic of Kazakhstan Using a New Biopreparation Method Microorganisms 11, 522. doi: 10.3390/microorganisms11020522

Chao Zhang, Daoji Wu, and Huixue Ren1 (2020) [cited]. Bioremediation of oil-contaminated soil using agricultural wastes via a microbial consortium Scientific Reports (2020) 10:9188. doi: 10.1038/s41598-020-66169-5

Besalatpour, A., Hajabbasi, M. A., Khoshgoftarmanesh, A. H. & V. Dorostkar. Effects of the Landfarming Process on the Biochemical Properties of Petroleum-Contaminated Soils Journal of Soil Contamination 2011;20:15.

Wu, M. et al. Bioremediation of petroleum-contaminated soil and hydrocarbon-degrading bacteria Chinese Journal of Applied and Environmental Biology 22, 0878-0883 (2016).

New Society Publishers (2023): ‘What are the different types of bioremediation?’ Vol. 1, Chpt. 4.

Tang, J., Wang, M., Wang, F., & Sun, Q. (2011) ‘Exo-toxicity of petroleum hydrocarbon-contaminated soil. Journal of Environmental Sciences.

Sikkema, J., de Bont, J.A., & Poolman, B. (1995): Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59: 201-222.

Diez, J. M., & H. Pulliam, R. (2007): Hierarchical Analysis of Species Distributions and Abundance across Environmental Gradients. Ecology 88(12):3144-3152.

Rotimi Felix Afolabi, Onoja Mathew Akpa, O. M., & Osanaiye, P. A. (2017). Lepage-type change-point control charts applied monitoring acute malnutrition in under-5 children in Nigeria. American Journal of Public Health Research. 2017;5(6):197-203.

Labud, V., Garcia, C., & Hernandez, T. (2007). Effect of hydrocarbon pollution on the microbial properties of a sandy and clay soil. Chemosphere 66, 1863–1871. https://doi.org/10.1016/j.chemosphere.2006.08.021.

Van Dorst, J., Siciliano, S. D., Winsley, T., Snape, I., & Ferrari, B. C. (2014). Bacterial targets as potential indicators of diesel fuel toxicity in subantarctic soils. Appl Environ Microbiol 80:4021–4033. DOI:10.1128/AEM.03939-13.

Cerniglia, C. E., Freeman, J. P., Althaus, J. R., & van Baalen, C. (1983). Metabolism and toxicity of 1-and 2-methylnaphthalene and their derivatives in cyanobacteria. Arch Microbiol. 136, 177–183. DOI:10.1007/BF00409840.

M. Tyagi, M. M. R. da Fonseca, C. de Carvalho Bioaugmentation and biostimulation strategies to improve bioremediation process effectiveness Biodegradation 2011, 22 (2), 231−241.

Bento, F. M.; Camargo, F. A. O.; Okeke, B. C.; Frankenberger, W. T. Bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation, and bioaugmentation. Technol. 2005, 96 (9), 1049−1055.

Kvasnikov, E.I., Klushnikova, T.M., 1981. Oil-Degrading Microorganisms in Water Basins; Naukova Dumka: Kiev, Russia, 1981; p. 131.

Koronelli, T.V.; Dermicheva, S.G.; Ilyinsky, V.V.; Komarova, T.I.; Porshneva, O.V. Species structure of hydrocarbon-oxidizing bacteriocenoses in aquatic ecosystems of different climatic zones Microbiology 1994, 63, 917-923.

Kafilzadeh, F.; Rezaei, A.; Nejad, M.J.N. Evaluation of phenanthrene biodegradation by indigenous bacteria isolated from mangrove sediments in the Persian Gulf. Adv Environ Biol 2013;7:2218–2224.

S. Fuentes, V. Méndez, P. Aguila, M. Seeger Bioremediation of petroleum hydrocarbons: Catabolic genes, microbial communities, and applications. Appl. Microbiol. Biotechnol. 2014, 98, 4781-4794. https://doi.org/10.1016/j.applbiotech.2014.09.010.

Sharma, S.; Pathak, H. Pseudomonas in biodegradation. Int J Pure Applied Biosciences, 2014, 2, 213-222.

Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review Front. Microbiol 2016; 7: 1369.

Koshlaf, E., & Ball, A.S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol. 2017, 3, 25-49.

Puntus, I.F., Borzova, O.V., Funtikova, T.V., Suzina, N.E., Egozarian, N.S., Polyvtseva, V.N., Shumkova, E.S., Akhmetov, L.I., Golovleva, L.A., Solyanikova, I.P., 2019. Contribution of soil bacteria isolated from different regions into crude oil and oil product degradation. J. Biotechnol. 2015; 57: 63-74. Soils Sediments 2019, 19, 3166-3177.

Sikkema, J., de Bont, J.A., & Poolman, B. (1995): Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59: 201-222.

Fu Chen, Xiaoxiao Li, Qianlin Zhu, Jing Ma, Huping Hou, Shaoliang Zhang (2021). Bioremediation of Petroleum-Contaminated SoilEnhanced by Aged Refuse. Chemosphere, 2019, 222, pp. 98-105. 10.1016/j.chemosphere.2019.01.122. https://hal.science/hal-02132897

Bayha KM, Ortell N, Ryan CN et al (2017) Crude oil impairs immune function and increases susceptibility to pathogenic bacteria in southern flounder. J Fish Res. 2017; 57: 59-69. PLOS ONE 12:0176559. https://doi.org/10.1371/journal.pone.0176559

Unwin, J., Cocker, J., Scobbie, E. et al. (2006). Assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK Ann Occup Hyg 50:395–403. https://doi.org/10.1093/annhyg/mel010

Rahman, H.H., Niemann, D., & Munson-McGee, S.H. (2022). Association among urinary polycyclic aromatic hydrocarbons and depression: a cross-sectional study from NHANES 2015-2016. Environ. Sci. Pollut. Res. 29:13089–13097. https://doi.org/10.1007/s11356-021-16692-3

Williams SB, Shan Y, Jazzar U et al (2020) Proximity to oil refineries and risk of cancer: a population-based analysis. JNCI Cancer Spectr. 2020;4:pkaa088. https://doi.org/10.1093/JNCICS/PKAA088

Cheema, S., Lavania, M., & Lal, B. (2015). Impact of petroleum hydrocarbon contamination on the indigenous soil microbial community. Ann Microbiol 65:359–369. https://doi.org/10.1007/s13213-014-0868-1

Nyarko, H.D., Okpokwasili, G.C., Joel, O.F. et al. (2019). Effect of petroleum fuels and lubricants on soil properties of auto-mechanic workshops and garages in Cape Coast metropolis, Ghana. J Appl Sci Environ Manag 23:1287–1296. https://doi.org/10.4314/jasem.v23i7.15

Zahermand S, Vafaeian M, Hosein Bazyar M (2020) Analysis of the physical and chemical properties of soil contaminated with oil (petroleum) hydrocarbons. J Biol Chem Biol Earth Sci Res J 24: 163–168. https://doi.org/10.15446/esrj.v24n2.76217

Hu, M. (2020). Environmental behavior of petroleum in soil and its harmfulness analysis. Journal of Environmental Research. In IOP Conference Series: Earth Environ Sci 450:012100 (IOP Publishing)

Devatha, C.P., Vishal, V.A., Rao, P.C., 2019. Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Appl Water Sci 9:1–10. https://doi.org/10.1007/s13201-019-0970-4

Pande, V., Pandey, S.C., Sati, D., Pande, V., Samant, M., 2020. Bioremediation: an emerging effective approach toward environment restoration. Environ. Sustain. 3 (1): 91-103.

Rylott, E. L., & Bruce, N. C. (2020). How synthetic biology can help bioremediation. Curr. Opin. Chem. Biol. 58, 86-95.

F. Xin, W. Dong, Z. Dai, Y. Jiang, W. Yan, Z. Lv, Y. Fang, M. Jiang Chapter 9—Biosynthetic Technology and Bioprocess Engineering. Singh, S.P., Pandey, A., Du, G., Kumar, S., Eds., Current developments in biotechnology and bioengineering, 207–232. Amsterdam: Elsevier, the Netherlands, 2019; pp. 207-232.

Bhattacharjee, G.; Gohil, N.; Singh, V.14—Synthetic biology approaches for bioremediation.

InBioremediationofPollutants; Pandey, V.C., Singh, V., Eds.; Elsevier: Amsterdam, the Netherlands, 2020, pp. 303-312.

Sayler, G. S.; Ripp, S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr. Opin. Biotechnol. 2000, 11 (3), 286−289.

Pieper, D. H., and W. Reineke. 2000. Engineering bacteria for bioremediation. Current Opinion in Biotechnology 11(3): 262-270.

Nivetha, N., Srivarshine, B., Sowmya, B., Rajendiran, M., Saravanan, P., Rajeshkannan, R., Rajasimman, M., Thi Hong Trang Pham, V., Shanmugam, V., and Dragoi, E. (2023). A Comprehensive Review on Bio-Stimulation and Bio-Enhancement toward Remediation of Heavy Metals Degeneration. Chemosphere. Volume 213, Part 1, January 2023, 137099. https://doi.org/10.1016/j.chemosphere.2022.137099

Ajona M, Vasanthi P. Bio-remediation of crude oil contaminated soil using recombinant native microbial strain. Environmental Technology and Innovation, vol. 23, pp. 101635, 2021. https://doi.org/10.1016/j.eti.2021.101635

Sayyed Hossein Mirdamadian, Giti Emtiazi, Mohammed H. Golabi, and Hossein Ghanavati (2010). Bioremediation of Petroleum and Aromatic Hydrocarbons by Isolating Bacteria from Petroleum-Contaminated Soil J Pet Environ Biotechnol. Volume 1, Issue 1. 1000102. https://doi:10.4172/2157-7463.1000102

Linag Zhu, Wei Ding, Li-Juan Feng, Yun Kong, Jing Xu, and Xiang-Yang Xu (2012). Isolation of Aerobic Denitrifiers and Characterization of Their Potential Application in the Bioremediation of Oligotrophic Ecosystems Bioresource Technology. Volume 108, Pages 1-7. https://doi.org/10.1016/j.biortech.2011.12.033

Gupta, C., Prakash, D., 2020. Novel bioremediation methods in waste management: novel bioremediation methods. In: Waste Management: Concepts, Methodologies, Tools, and Applications. IGI Global, pp. 1627-1643.

Zakaria, N. N., Convey, P., Gomez-Fuentes, C., Zulkharnain, A., Sabri, S., Shaharuddin, N. A., Ahmad, S. A., 2021. Oil bioremediation in the Antarctic marine environment: a review and bibliometric keyword cluster analysis Microorganisms 9 (2), 419.

Sabirova, J. S.; Ferrer, M.; Lünsdorf, H.; Wray, V.; Kalscheuer, R.; Steinbüchel, A.; Timmis, K. N.; Golyshin, P. N. Mutation in a “tesB-Like” Hydroxyacyl-Coenzyme A-specific thioesterase gene causes hyperproduction of extracellular polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J. Bacteriol. 2006, 188 (24), 8452− 8459.

B. M. Dellagnezze, S. P. Vasconcellos, A. L. Angelim, V. M. M. Melo, S. Santisi, S. Cappello, and V. M. Oliveira Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale. Bull. 2016, 107 (1), 107−117.

Vasconcellos, S. P. d.; Angolini, C. F. F.; García, I. N. S.; Martins Dellagnezze, B.; Silva, C. C. d.; Marsaioli, A. J.; Neto, E. V. d. S.; de Oliveira, V. M. Screening for hydrocarbon biodegraders in a metagenomic clone library derived from Brazilian petroleum reservoirs. Org. Geochem. 2010, 41 (7), 675−681.

Rodrigues, D. F.; Elimelech, M. Role of type 1 fimbriae and mannose in Escherichia coli K12 biofilm development: from initial cell adhesion to biofilm formation Biofouling 2009, 25 (5), 401−411.

Xu, M., Z. Xue, J. Liu, S. Sun, Y. Zhao, and H. Zhang. 2022. Observation of few GR24 induced fungal-microalgal pellet performance for higher pollutants removal and biogas quality improvement. Energy, 123171, doi:10.1016/j.energy.2012.09.010.

Wang, B.; Xu, J.; Gao, J.; Fu, X.; Han, H.; Li, Z.; Wang, L.; Tian, Y.; Peng, R.; Yao, Q. Construction of an Escherichia coli strain to degrade phenol completely with two modified metabolic modules. Hazard. Mater. 2019, 373, 29-38. [CrossRef].

Ma, M., Gao, W., Li, Q., Han, B., Zhu, A., Yang, H., Zheng, L., 2021. Biodiversity and oil degradation capacity of oil-degrading bacteria isolated from deep-sea hydrothermal sediments of the South Mid-Atlantic Ridge. Bull. 171, 112770.

Boronin, A. M.; Kosheleva, I. A. The role of catabolic plasmids in the biodegradation of petroleum hydrocarbons Cao, G., & Orrù, R. (2014). Current Environmental Issues and Challenges. Springer: Dordrecht, The Netherlands, 2014; pp. 159-168.

Bhatt P, Bhandari G, Bhatt K, Maithani D, Mishra S, Gangola S, Bhatt R, Huang Y, Chen S. Plasmid-mediated catabolism for the removal of xenobiotics from the environment. J Hazard Mater. 2021; 420:126618.

M. Emamalipour, K. Seidi, S. Zununi Vahed, A. Jahanban-Esfahlan, M. Jaymand, H. Majdi, Z. Amoozgar, L.T. Chitkushev, T. Javaheri, R. Jahanban-Esfahlan, et al., Horizontal Gene Transfer: From Evolutionary Flexibility to Progression of Diseases Front. Cell Dev Biol 2020; 8:229.

Yutin, N. Horizontal gene transfer In Brenner’s Encyclopedia of Genetics, 2nd ed.; S. Maloy, K. Hughes, Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 530-532.

Abbasian, F.; Lockington, R.; Megharaj, M.; Naidu, R. A Review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation. Appl Biochem Biotechnol 2016; 178: 224-250.

Valentina Jiménez-Díaz, Aura Marina Pedroza-Rodríguez, Oswaldo Ramos-Monroy, and Laura C. Castillo-Carvajal. Synthetic Biology: A New Era in Hydrocarbon Bioremediation Processes 2022, 10, 712. https://doi.org/10.3390/pr10040712

Tran, K. M.; Lee, H.; Thai, T. D.; Shen, J.; Eyun, S.; Na, D. Synthetically engineered microbial scavengers for enhanced bioremediation. Hazard, J. Mater. 2021; 419:126516.

Jones, J. A.; Koffas, M. A. G. Chapter Eight—Optimizing Metabolic Pathways for Improved Natural Product Production Meth. Enzymol. 2016, 575, 179-193.

Jain, C.K.; Gupta, M.; Prasad, Y.; Wadhwa, G.; Sharma, S.K. Homology modeling and protein engineering of alkane monooxygenase in Burkholderia thailandensis MSMB121: In silico insights. J Mol Model. 2014;20:2340–43. doi: 10.1016/j.jm.2014.07.020

Hamza Rafeeqa, Nadia Afsheena, Sadia Rafiqueb, Arooj Arshadc, Maham Intisarc, Asim Hussainc, Muhammad Bilald, and Hafiz M.N. Iqbale Genetically engineered microorganisms for environmental remediation Chemosphere 310, 136751 (2023) 136751.

Peng Z, Liu X, Zhang W, Zeng Z, Liu Z, Zhang C, et al. 2020. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environ. Int. 134, 105298 (2010). https://doi.org/10.1016/j.environ.2013.11.016

Mishra, B., Varjani, S., Pradhan, I., Ekambaram, N., Teixeira, J.A., Ngo, H.H., Guo, W., 2020a. Interdisciplinary approaches for the bioremediation of organic pollutants: innovations, challenges, and perspectives Proc. Natl. Acad. Sci. India B. Biol. Sci. 90 (5), 951-958.

Mishra S, Zhang W, Lin Z, Pang S, Huang Y, Bhatt P, Chen S. 2020b. Carbofuran toxicity and microbial degradation in contaminated environments Chemosphere 259: 127419.

Ławniczak, Ł., Wo´zniak-Karczewska, M., Loibner, A.P., Heipieper, H.J., Chrzanowski, Ł., 2020. Microbial degradation of hydrocarbons—basic principles for bioremediation: a review Molecules 25 (4): 856.

Kurade, M. B., Ha, Y. H., Xiong, J. Q., Govindwar, S. P., Jang, M., & Jeon, B. H. (2021). Phytoremediation as a green biotechnology tool for emerging environmental pollution: a step forward toward sustainable rehabilitation of the environment. Chem. Eng. J. 2014; 415:129040.

Mehta, K., Shukla, A., & Saraf, M. (2021). Articulating the exuberant intricacies of bacterial exopolysaccharides to purge environmental pollutants Heliyon 7 (11), e08446.

Gallo, G., Puopolo, R., Carbonaro, M., Maresca, E., Fiorentino, G., 2021. Extremophiles, a nifty tool to face environmental pollution: from exploitation of metabolism to genome engineering. Int. J. Environ. Res. Health 18 (10), 5228.

Wiener, E. A., & LeFevre, G. H. (2022). White rot fungi produce novel tire wear compound metabolites and reveal underappreciated amino acid conjugation pathways. Environ. Sci. Technol. Lett 9 (5), 391-399.

Li, C., Quan, Q., Gan, Y., Dong, J., Fang, J., Wang, L., Liu, J., 2020. Effects of heavy metals on microbial communities in sediments and establishment of bioindicators based on microbial taxa and function for environmental monitoring and management. Total Environ. 749: 141555.

Shankar M. Khade and S. K. Srivastava (2020). Genetically Modified Microbes for the Bioremediation of Oil Spills in the Marine Environment School of Biochemical Engineering, IIT (BHU), Varanasi-221005, Uttar Pradesh, India

Oelschlägel, M., Kaschabek, S. R. et al. (2015). Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria. J. Biol. Chem. Phys. Biotechnol. Rep. 6 (0): 20-26.

Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. J Biol Chem. 2011; 57: 69-80. Biotechnol Res Int 2011:1–13. https://doi.org/10.4061/2011/941810

Harayama, S., Kasai, Y. et al. (2004). Microbial communities in oil-contaminated seawater Current Opinion in Biotechnology 15(3): 205-214.

Nakamura, S., Sakamoto, Y. et al. (2007). Characterization of two oil-degrading bacterial groups in the Nakhodka oil spill International Biodeterioration & Biodegradation 60(3): 202-207.

Von der Weid, I., Marques, J.M. et al. (2007). Identification and biodegradation potential of Dietzia cinnamea strain isolated from petroleum-contaminated tropical soil Systematic and Applied Microbiology 30(4): 331-339.

Pandey G, Paul D, Jain RK. Conceptualizing “Suicidal Genetically Engineered Microorganisms” for Bioremediation Applications. Biochem Biophys Res Commun. 2005 Feb. 18:327(3):637-9. https://doi:10.1016/j.bbrc.2004.12.080

Thomas, S.C., Madaan, T., Kamble, N.S., Siddiqui, N.A., Pauletti, G.M., Kotagiri, N., 2022. Engineered bacteria enhance immunotherapy and targeted therapy through tumor stromal remodeling Adv. Health care Mater. 11 (2), 2101487.

Sousa, S., Duffy, C. et al. (1998). Use of a lux–modified bacterial biosensor to identify bioremediation constraints of btex–contaminated sites. Environmental Toxicology and Chemistry 17(6): 1039-1045.

Wang, F.; Zhang, W. Synthetic biology: Recent progress, biosafety and biosecurity concerns, and possible solutions. J Biosaf Biosec 2019, 1, 22-30. https://doi.org/10.1016/j.biosaf.2019.01.016

de Lorenzo, Environmental biosafety in the age of synthetic biology: Do we really need a radical new approach? Bioessays 2010, 32, 926-931. https://doi.org/10.1016/j.bioessays.2010.09.013.

Fan, M., Hu, J., & Cao, R. (2018): A review of experimental design for pollutants removal in water treatment with the aid of artificial intelligence. Journal of Biological Chemistry, 69, 69–69. Chemosphere 200:330–343. https://doi.org/10.1016/j.chemosphere.2018.02.111

Steffi, P. F.; Thirumalaiyammal, B.; Mishel, P. F. X., X. C. H., X. H., X. H., X. H., X. F. (2022): Artificial intelligence in bioremediation modeling and cleanup of contaminated sites: recent advances, challenges, and opportunities. Omics Insights in Environmental Bioremediation. pp. 683–702

Rupshikha Patowary, Arundhuti Devi1, Ashis K. Mukherjee (2023): Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oilcontaminated sites: a prospective study. Environmental Science and Pollution Research 30:74459–74484. https://doi.org/10.1007/s11356-023-27698-4

Kumar D, Mathur S (2013) Proxy simulation of in situ bioremediation system using artificial neural network. J Biol Sci. 2013; 58: e013. Int J Comp Appl 975: 8887.

Bordoloi S, Basumatary B, Saikia R (2012) Axonopus compressus (Sw.) P. Beauv. Native grass species for the phytoremediation of hydrocarbon-contaminated soil in Assam India J Chem Technol Biotechnol 87:1335–1341. doi: 10.1002/jctb.3765

Ramasamy S, Arumugam A, Chandran P (2017) Optimization of Enterobacter cloacae (KU923381) for diesel oil degradation using response surface methodology (RSM) using response surface methodology (RSM) for diesel oil degradation. J Microbiol 55:104–111. https://doi.org/10.1007/s12275-017-6265-2

Jiao, Z., Jia, G., & Cai, Y. (2019). A new approach to oil spill detection that combines deep learning with unmanned aerial vehicles. Comput Ind Eng 135:1300–1311. https://doi.org/10.1016/j.cie.2018.11.008

Sanusi SNA, Halmi MIE, Abdullah SRS et al (2016) Comparative process optimization of pilot-scale total petroleum hydrocarbon (TPH) degradation by Paspalum scrobiculatum L. Hack using response surface methodology (RSM) and ANNs. Ecol Eng 97:524–534. https://doi.org/10.3390/ijerph18020819

Sui, H., Li, L., Zhu, X., et al. (2016). Modeling the adsorption of PAH mixture in silica nanopores by molecular dynamic simulation combined with machine learning. Molecular Dynamics and Machine Learning. Chemosphere 144:1950–1959. https://doi.org/10.1016/j.chemosphere.2015.10.053

Wang P, Yao J, Wang G, Hao, et al (2019) Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants. Water Pollutants. 2019;3(1):3-4. Sci Total Environ 693:133440. doi: 10.1016/j.scitotenv.2019.07.246

Shadrin, D., Pukalchik, M., & Kovaleva, E. (2020). Artificial intelligence models to predict acute phytotoxicity in petroleum contaminated soils. Ecotoxicol Environ Saf 194:110410. https://doi.org/10.1016/j.ecoenv.2020.110410

Stratiev, D., Shishkova, I., & Dinkov, R. (2023). Prediction of petroleum viscosity from molecular weight and density Fuel 331:125679. doi: 10.1016/j.fuel.2022.125679

Jiang, B.; Song, Y.; Liu, Z.; Huang, W.E.; Li, G.; Deng, S.; Xing, Y.; Zhang, D. Whole-cell misreporters for evaluating petroleum hydrocarbon contamination. Crit. Rev. Environ. Sci. Technol. 2021, 51, 272–322. https://doi.org/10.1016/j.crst.2021.01.02.

B.K. Behera, A. Das, D.J. Sarkar, P. Weerathunge, P.K. Parida, B.K. Das, P. Thavamani, R. Ramanathan, V. Bansal, Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: Perils and remedies through biosensors and bioremediation. Environ Pollut 2018;241:212–233. https://doi.org/10.1016/j.environpol.2018.09.010.

Nandimandalam, H.; Gude, V.G. Indigenous biosensors for in situ hydrocarbon detection in aquatic environments. Bull. 2019, 149, 110643.

Paitan,Y.; Biran, I.; Shechter,N.; Biran,D.; Rishpon,J.; Ron,E.Z. Monitoring aromatic hydrocarbons using whole-cell electrochemical biosensors Anal. Biochem. 2004, 335:175–183.

Bilal, M., & Iqbal, H. M. N. (2019). Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook. Journal of Applied Microbiology. Process Saf. Environ. Prot. 2019, 124, 8-17.

Rajkumar, P.; Ramprasath, T.; Selvam, G.S. 12—A simple whole cell microbial biosensors to monitor soil pollution. In New Pesticides and Soil Sensors; Grumezescu, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 437-481.

Nigam, V. K.; Pratyoosh, S. Enzyme Based Biosensors for Detection of Environmental Pollutants-A Review. J Microbiol Biotechnol 2015;25:1773–1781.

Voon, C.H.; Yusop, N.M.; Khor, S.M. State-of-the-art bioluminescent whole-cell biosensor technology for detecting various organic compounds in wastewater oil and grease: From the laboratory to the field. Talanta 2022; 241: 123271.

Moratti, C.F.; Scott, C.; Coleman, N.V. Synthetic Biology Approaches for the Development of Hydrocarbon Biosensors: A Review Bioeng Biotechnol. 2022, 9, 804234.

Imam, A., Suman, S. K., Ghosh, D., and Kanaujia, P. K. Analytical approaches used in monitoring the bioremediation of hydrocarbons in petroleum-contaminated soil and sludge. TrAC Trends Anal. Chem. 2019, 118, 50-64. https://doi.org/10.1016/j.trac.2019.03.010.

Tecon, R.; Van der Meer, J.R. Bacterial Biosensors for Measuring the Availability of Environmental Pollutants Sensors 2008, 8, 4062-4080.

Plotnikova, E. G., Shumkova, E. S., & Shumkov, M. S. (2016). Whole-cell bacterial biosensors for the detection of aromatic hydrocarbons and their chlorinated derivatives. Appl. Biochem. Microbiol. 2016, 52, 347-357.

R. Patel, P. Zaveri, A. Mukherjee, P.K. Agarwal, P. More, N.S. Munshi Development of fluorescent protein-based biosensing strains: A new tool for detecting aromatic hydrocarbon pollutants in the environment. Ecotoxicol Environ Saf 2019;182:109450. doi: 10.1016/j.ecosaf.2019.09.450.

Roy, R.; Ray, S.; Chowdhury, A.; Anand, R. Tunable Multiplexed Whole-Cell Biosensors as Environmental Diagnostics for the Detection of ppb-Levels of Aromatic Pollutants ACS Sens. 2021, 6, 1933-1939.

Phenrat, T., Skácelová, P., Petala, E., Velosa, A., and Filip, J. Nanoscale zerovalent iron particles for water treatment: From basic principles to field-scale applications In: Filip J, Cajthaml T, Najmanová P, Černík M, Zbořil R, editors. Advanced Nano-Bio Technologies for Water and Soil Treatment. Cham: Springer International Publishing; 2020. p. 19-52.

Ashok KR. Biostimulation Remediation Technologies for Groundwater Contaminants United States: IGI Global; 2018. p. 381.

A. Pete, B. Bharti, M. Benton, Nano-enhanced bioremediation for oil spills: a review. ACS EST Eng 2021;1:928-46.

B.

C.G. Avio, S. Gorbi, F. Regoli Plastics and microplastics in the oceans: From Emerging Pollutants to Emerging Threat. Mar. Environ. Res. 2017, 128, 2-11.

Alimi, O.S.; Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 2018;52:1704–24.

Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A review of environmental monitoring of water organic pollutants identified by EU guidelines. Hazard, J. Mater. 2018, 344, 146-162.

Thompson, L.A.; Darwish, W.S. Environmental chemical contaminants in food: Review of a global problem. J. Toxicol. 2019 (2019). https://doi.org/10.1016/j.jtoxicol.2019.01.013.

Jeon, J.R.; Murugesan, K.; Baldrian, P.; Schmidt, S.; Chang, Y.S. Aerobic bacterial catabolism of persistent organic pollutants—Potential impact of biotic and abiotic interaction. Curr. Opin. Biotech. 2016, 38, 71-78. https://doi.org/10.1016/j.cobi.2016.08.020

Zhu, X., Chen, B., Zhu, L., & Xing, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017, 227, 98–115.

Hurtado, C.; Montano-Chávez, Y.N.; Domínguez, C.; Bayona, J.M. Degradation of emerging organic contaminants in agricultural soil: Decoupling biotic and abiotic processes Water, Air, Soil Pollut. 228 (2017) 243.

Kang, J.W. Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 2014; 36: 1129–1339.

Fulekar, M. H.; Pathak, B. Environmental Nanotechnology, 1st ed.; Boca Raton, FL, USA: CRC Press, 2017; pp. 140-157.

Guerra FD, Attia MF, Whitehead DC et al (2018) Nanotechnology for environmental remediation: materials and applications. Molecules 2(3):1760. https://doi.org/10.3390/molecules23071760

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

Kumari, B.; Singh, D.P. A review of multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecological Engineering, 2016, 97, 98-105.

Koul, B.; Taak, P. Chemical methods for soil remediation. Biotechnological Strategies for Effective Remediation of Polluted Soils, 1st ed.; Koul, B., Taak, P., Eds.; Springer: Singapore, 2018; Volume 1, pp. 77-84.

El-Ramady, H., Alshaal, T., Abowaly, M., Abdalla, N., Taha, H.S., Al-Saeedi, A.H., Shalaby, T., Amer, M., Fári, M., Domokos-Szabolcsy, É., et al. Nanoremediation for Sustainable Crop Production In Nanoscience in Food and agriculture, 1st ed.; Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Springer: Singapore, 2017; Volume 1, pp. 335-363.

Xu P, Xu M (2019). Damage mechanism of oil-based drilling fluid flow in seepage channels for fractured tight sandstone gas reservoirs. Geofluids. https://doi.org/10.1155/2019/2672695

Samuel Sanni, 2016: Mathematical Modeling of insitu-Bioremediation of Crude Oil Polluted Soil. Science and Engineering Applications 1 (4) (2016) 27-32.

Jay W. Grate and JungbaeKim (2003): Nanobiotechnology using enzymes for environmental remediation. U.S. Department of Energy, Pacific NW National Laboratory.

Dwevedi, A. (2019). Solutions to Environmental Problems Involving Nanotechnology and Enzyme Technology. Cambridge, CA: Academic Press.

Baker S, Harini BP, Rakshith D, Satish S. Marine microbes: invisible nanofactories. J Pharm Res 2013;6:383-8.

Tratnyek P, Johnson R. Nanotechnologies for environmental cleanup Nano Today 2006;1:44-8.

Rao CN, Biswas K. Characterization of nanomaterials using physical methods Annu Rev Anal Chem (Palo Alto Calif) 2009;2:435-62.

Ebrahimbabaie, P., Meeinkuirt, W., & Pichtel, J. (2020): Phytoremediation of Engineered Nanoparticles Using Aquatic Plants: Mechanisms and Practical Feasibility. Phytomedicine. J Environ Sci 93:151–163.

Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D et al. Environmental remediation of heavy metal ions using novel nanomaterials: A review Environ Pollut 2019;246:608-20.

Tan, W.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of titanium dioxide nanoparticles with soil components and plants: Current knowledge and future research needs-a critical review. Environ. Sci. 2012; 58: e013-e018. Nano 2018, 5, 257-278.

A. Decesaro, T.S.; Cappellaro, Â.C.; Reinehr, C.O.; Thomé, A.; Colla, L.M. Biosurfactants during in situ bioremediation: Factors that influence the production and challenges in evaluation. Environ Sci Pollut Res. 2017, 24, 20831-20843. https://doi.org/10.1016/j.environpol.2017.08.033.

B.

S. Bartke, N. Hagemann, N. Harries, J. Hauck, P. Bardos, Market potential of nanoremediation in Europe—Market drivers and interventions identified in a deliberative scenario approach. Total Environ. 2018, 619, 1040-1048.

Medina-Pérez, G.; Fernández-Luqueño, F.; Vazquez-Nuñez, E.; López-Valdez, F.; Prieto-Mendez, J.; Madariaga-Navarrete, A.; Miranda-Arámbula, M. Remediating polluted soils using nanotechnologies: Environmental benefits and risks. Pol J Environ. Stud. 2019, 28, 1-18.

Kumar, S.R.; Gopinath, P. Nano-bioremediation: Applications of nanotechnology for bioremediation. J. Biol. Sci. Technol. 2011, 57, e007. In Handbook of Advanced Industrial and Hazardous Wastes Management, 1st ed.; Wang, K.L., Wang, S.M.-H., Hung, Y.-T., Shammas, N.K., Chen, J.P., Eds.; CRC Press: Boca Raton, FL, USA, 2009; Volume 1, pp. 27–48.

Hess, D. J.; Lamprou, A. Nanotechnology and the environment. Maclurcan, D., & Radywyl, N. (2011). Nanotechnology and Global Sustainability, 1st ed. CRC Press: Boca Raton, FL, USA, 2011; pp. 50-73.

Cecchin, I.; Reddy, K.R.; Thomé, A.; Tessaro, E.F.; Schnaid, F. Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int. Biodeterior. Biodegrad. 2017, 119, 419–428. https://doi.org/10.1016/j.ibb.2017.09.010.

Iturbe, R., & Lopez, J. (2015): Bioremediation for a soil contaminated with hydrocarbons. Iturbe and Lopez, JPet Environ Biotechnol, 6:2.

Odu, C. T. (1977). Oil Pollution and the Environment Bulletin of the Science Association of Nigeria, 3, 5-7.

Odu, C. T. (1981). Application of selected microorganisms to oil-polluted soil. In: The Petroleum and Nigeria Environment, Proceedings of an International Seminar, NNPC, pp. 143–153.

Bossert I, Bartha R (1984). Fate of Petroleum in Soil Ecosystems In: Atlas RM (Ed) Petroleum Microbiology, Macmillan, New York, pp 435–475.

Antai SP, Mgbomo E (1989) Distribution of hydrocarbon utilizing bacteria in oil spill areas. Microbios Letters, 8, 137–143.

Ijah UJJ, Okang CH (1993) Petroleum Hydrocarbon Degrading Capabilities of Bacteria Isolated from Soil. West African Journal of Biology and Applied Chemistry 38, 1–14.

Arjoon, K., & Speight, J.G. (2020). Chemical and physical analysis of a petroleum hydrocarbon contamination on a soil sample to determine its natural degradation feasibility. Inventions 5:43

Varges, J. P., Esteban, S., Carmona, V., Moreno, E. Z., Casado, and Graciano Calva Calva: (2017) ‘Bioremediation of soils from oil spill-impacted sites using bio-augumentation with bio-surfactants producing, native, free-living nitrogen-fixing bacteria. Rev Int Contam Ambie.33 (Especial Biotecnologia eingenieria ambiental) 105–114.

El-Liethy, M.A., Hemdan, B.A., Samhan, F.A., Ali, S.S., El-Taweel, G.E., 2017. Optimizing conditions for crude oil degrading bacterial consortium isolated from aquatic environment. Pollut Res 36: 197–204

Samhan, F. A., Elliethy, M. A., Hemdan, B. A., Youssef, M., and El-Taweel, G. E. (2017). Bioremediation of Oil-Contaminated Water by Bacterial Consortium Immobilized on Environmentally Friendly Biocarriers Water Pollution Research Department, National Research Center, Giza, Egypt ISSN: 0013-2446, Vol. 92, No. 1. https://doi:10.21608/EXP.2018.6649

Rosario Iturbe Arguelles, D. G. Herrera, R. A. Castro, T. C. Flores, C. H. M. Pacheco, R. L. Corona, M. J. A. Mendoza, M. J. Barrera A (2019). Bioremediation of Contaminated Soils with High Concentrations of Hydrocarbons (Diesel and PAH) Using Three Biostimulants Archives of Chemistry and Chemical Engineering, 1(2), p.

Priyom Bose (2021); Bioremediation: An Overview. Azolife Sciences.

Jin S, Fallgren PH (2007) Site-specific limitations of using urea as a nitrogen source in biodegradation of petroleum wastes in soil. J Soc Soc Soc Soil Sediment Contam 16:497–505. doi: 10.1080/15320380701490200

Mukred, A.M., Hamid, A.A., Hamzah, A., and Wan Yusoff, W.M. (2008) Enhancement of biodegradation of crude petroleum-oil in contaminated water by the addition of nitrogen sources Pak J Biol Sci 11:2122–2127. https://doi.org/10.3923/pjbs.2008.2122.2127

Sarkar, J., Kazy, S.K., Gupta, A., Dutta, A., Mohapatra, B., Roy, A., Bera, P., Mitra, A., Sar, P., 2016. Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge. Front Microbiol 7:1–20. https://doi.org/10.3389/fmicb.2016.01407

Hamzah, A., Zarin, M.A., Hamid, A.A., Omar, O., Senafi, S., 2012. Optimal physical and nutrient parameters for growth of Trichoderma virens UKMP-1M for heavy crude oil degradation. Sains Malaysiana 41: 71–79, 2019

Yong, R., & Mulligan, C. (2004): Natural Attenuation of Contaminants in Soils. Environment International. 30(4): 587-601.

Latif A, Sheng D, Sun K, Si Y, Azeem M, Abbas A et al. Remediation of heavy metal-polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications Environ Pollut 2020; 264: 114728.

Margesin, R., & Schinner, F. (2001). Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663. https://doi.org/10.1007/s002530100701

Venosa, A.D., Zhu, X., 2003. Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands. Spill Sci Technol Bull 8:163–178. https://doi.org/10.1016/S1353-2561(03)00019-7

Ehirim, E. O., Walter, C., & Ukpaka, P. C. (2018): Mix Model Formulation for TPH prediction during bioremediation of hydrocarbon-contaminated soils. American Journal of Engineering Research (AJER). Volume-9, Issue-4, pp-01-11.

Ron, E. Z.; Rosenberg, E. Enhanced bioremediation of oil spills in the sea. Curr. Opin. Biotechnol. 2014, 27, 191−194.

Leahy, J. G.; Colwell, R. R. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 1990, 54 (3), 305−315.

Denkov, N. D.; Ivanov, I. B.; Kralchevsky, P. A.; Wasan, D. T. A possible mechanism of emulsion stabilization by solid particles. Colloid Interface Sci. 1992, 150 (2), 589−593.

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.